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PREFACE 
 

An increasing interest in the neural networks and soft computing is visible in 
sciences and engineering. Just in this field, two CISM Advanced Schools were 
organized in 1998 and 2003. The corresponding books were published as CISM 
Courses and Lectures Nos 404 and 496. The first book was written on neural 
networks in the analysis and design of structures. Chapter 7 of the other book 
was devoted to applications of neural networks to the identification of structural 
mechanics problems. 

The present book corresponds to six cycles of lectures given at the CISM 
Advanced School on Advances of Soft Computing in Engineering, held in Udine, 
Italy on October 8-12, 2007. The lectures were delivered by invited professors 
from six different universities. 

The first three Chapters are based on soft methods related to genetic and 
evolutionary algorithms. Next to the theoretical and algorithmic background, 
many engineering applications are discussed and, especially, those addressed to 
civil and mechanical engineering are worth emphasizing. The next three 
Chapters are devoted to neural networks (NNs) and their engineering 
applications. Beside the standard, deterministic NNs also probabilistic and, 
especially, Baysian NNs are discussed. Their applications in mechanics of 
structures and materials are presented from the viewpoint of civil, seismic and 
mechanical engineering problems. 

The organizers of the School and editors of this book wish to express they 
cordial thanks to the invited lecturers (Professors Tadeusz Burczy�ski of 
Silesian University of Technology, Poland, Jamshid Ghaboussi of University of 
Illinois at Urbana-Champain, USA, Manolis Papadrakakis of National 
University of Athens, Greece, John Miles of Cardiff University, UK, Vassili 
Toropov of University of Leeds, UK) for their effort at delivering lectures and 
preparing the camera ready manuscripts. We would like to thank very much 
Professor Giulio Maier, Rector of CISM, for his enthusiasm, help and keen 
support in the organization of the School and to Professor Paolo Serafini for his 
constant help in the editorial work. 

 
Zenon Waszczyszyn 

Marek S�o�ski 
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CHAPTER 1

Genetic Algorithms for Design

John Miles

Cardiff School of Engineering
Cardiff University, UK

Abstract. The chapter covers two main areas, these being an introduction
to the technology and techniques associated with genetic algorithms and
then the second part looks at how genetic algorithms can be used to search
for good topological solutions to engineering design challenges. The start
of the chapter places genetic algorithms in context compared to other evo-
lutionary algorithms and also describes the reasons why genetic algorithms
are potentially useful. This is then followed by a look at the concept of
a search space. Section two looks at the canonical genetic algorithm as
a basic introduction to the technology and includes an examination of the
main techniques used to encode the genome, fitness functions, operators
and selection. Section three looks at how genetic algorithms can be used
for design and chooses the specific example of the conceptual design of
commercial office buildings. Section four introduces the basic concepts of
topological search and explains how having the right form of representa-
tion is vital before looking at example relating to structural components and
the design of domes using a genetic algorithm linked to computational ge-
ometry techniques. The final section then looks at further methods using
generative representations and generative geometries as possible solutions
to the need to develop powerful forms of representation for handling topo-
logical search in genetic algorithms.

1 Introduction

Genetic Algorithms belong to a group of techniques which are generally described
by the collective term evolutionary computation. The other techniques within
this group include genetic programming, evolutionary strategies, evolutionary pro-
gramming and particle swarm analysis. The defining features of this group of
algorithms are:

Their usage of a stochastic search process employing a population of solu-
tions rather than one point at a time;
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Their requirement for relatively little information about the nature of the
problem being solved;

Their ability to avoid premature convergence on local optima;

Their ability to cope with constraints;

Their ability to cope with problems involving many objectives.

In general, genetic algorithms are robust and applicable to a wide range of prob-
lems, although one must always bear in mind the findings of Wolpert and MacReady
(1997) that there is no single algorithm that will perform well on all problems.

Generally, genetic algorithms are thought of as an optimization technique but
this is somewhat misleading. Although they are generally an excellent method for
finding good solutions which are close to the optimum, they often fail to find the
actual optimum. For most problems, especially in Engineering, getting close to
the optimum is sufficient and the performance of genetic algorithms is such that
they generally outperform other algorithms.

If it is desirable to find the optimum, rather than an answer which is very close
to it, then a successful method is to use a genetic algorithm to get close to the
optimum and then a technique such as hill climbing to search around the solution
found by the genetic algorithm to find the desired solution.

There is another useful feature of genetic algorithms which is rarely used but
which is very powerful. This is their ability to explore a search space (i.e. the space
of all possible solutions) rather than look for a single ”‘best”’ solution. For many
problems, such as design, rather than locating the ”best” solution, the user can
find it useful to learn about the range of possibilities and also to vary the objective
function (i.e. the criteria being used to search for the solution) as more is learned
about the nature of the problem. In such circumstances, a single solution is un-
desirable and indeed, there is rarely a ”best” solution to multi-objective problems
because of the trade offs between the various objectives. Genetic algorithms are
an excellent technique for helping designers to find areas within the problem space
that contain good solutions and additionally, the interaction between the designer
and the algorithm can be highly beneficial (Parmee, 2001).

The concept of a ”search space” is one that will occur throughout these notes. A
search space can be defined as the entire range of possible solutions to a problem.
A potential search space is shown below in Figure 1. As can be seen the space
has 3 dimensions. The two horizontal dimensions will typically represent the two
variables that are present in the problem (for example, for an engineering problem
these could be weight and cost) and the vertical dimension then represents the
”fitness” of the solution (i.e. how good the solution is). Note that the search space
in this example is continuous (this is not always the case) and has many peaks
of similar height. The problem therefore is, typically, to look around the search



www.manaraa.com

Genetic Algorithms for Design 3

Figure 1. An example of a search space

space and find the highest peak, although sometimes it may be desirable to find
all the peaks over a given threshold value. For a simple two variable problem of
the sort illustrated, this looks like an easy task, but most real search spaces are
multi-dimensional and many have discrete variables and so possess discontinuities
which are a challenge for any algorithm.

In this chapter, the basic techniques of the so called canonical genetic algo-
rithm will be covered. There are many variants on the canonical genetic algorithm
but these are mostly fairly simple to understand once one has grasped the basic
features of genetic algorithms. In terms of programming, commercial software
for genetic algorithms is available. For example, Matlab has an extension which
allows the easy development of a genetic algorithm. However, as will be shown
in the following sections, genetic algorithms are relatively simple and often it is
easier to write your own program because then this can be adapted, as required, to
your particular problem.

2 The Canonical Genetic Algorithm

The basic architecture of the canonical genetic algorithm is given in Figure 2. As
shown, the process starts with the creation of an initial population. Each member
of the population represents a potential solution to the problem being considered
although, as will be shown, many features of the problem are contained within
the fitness function rather than within the population. Searching for a solution(s)
using a population means that at each step, a genetic algorithm samples as many
points within the search space as there are members of the population (assuming
no two members are identical). This is one of the strengths of a genetic algorithm,
enabling it to sample widely throughout the search space and identify areas of high
performance (i.e. good solutions) on which the search can start to converge. The
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use of a population enables multiple high performance areas to be identified and
explored in further detail. This helps the genetic algorithm to avoid convergence
on local optima.

Figure 2. Schematic representation of a GA

Once the initial population is established, the basic process of the genetic al-
gorithm is to adapt and modify the members of the population based on feedback
relating to how good a solution is each member of the population, until one or more
good solutions are found. The judgement of how well each member of the popula-
tion performs is undertaken by the fitness function. The adaptation and modifica-
tion is then undertaken by the selection, crossover and mutation processes shown
in 2 and there is an iterative procedure, represented by the loop, which continues
until some convergence criterion is satisfied.

The process is analogous to Darwinian evolution in that there is a population
of solutions. These solutions are subject to an environment (the fitness function)
which tends to favour the reproduction of the solutions which are best suited to
that environment. Hence solutions which suit the defined environment are evolved
over a number of iterations (called generations).
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2.1 Encoding the Problem

The typical genetic algorithm uses a binary string to represent each member of
the population. How this is achieved, varies with each problem. A simple practical
example is the problem examined by (Hooper, 1993) who devised a technique for
determining the best strategy for the disposal of the sludge from a sewage treatment
works. If the sludge was to be disposed of to agriculture, then there were a given
number of farms which could be used within an economical travelling distance of
the treatment works. The encoding used for this problem was to represent each
farm by one of the characters in a binary string (often called a chromosome), with
each character being called a gene. If the gene was 1, then the policy represented
by that individual was that the farm would be used to dispose of sludge. If it was
zero, then the farm would not be used. Assuming an example where there are ten
farms, a possible individual would then be as follows: [1001011101]

This represents the disposal of sludge on farms one, four, six, seven, eight
and ten and no disposal on the remainder. In the way that a genetic algorithm
works, it must be remembered that this would be just one possible solution within
a population of solutions.

An alternative to using binary encoding is to use so called real numbers. The
terminology is confusing because often the numbers are integers but as this is the
standard terminology within the evolutionary computation community, it will be
used throughout these notes.

In real number encoding, rather than using binary, actual numbers are used. For
example, Bradshaw (1996) was asked to derive an optimum electricity generation
strategy for the island of Great Britain. The constraints were that the strategy
had to meet the demand for power at all times while allowing sufficient time for
maintenance etc and taking account of the fact that it is better to generate electricity
as close to the demand as possible to reduce losses in transmission. The objective
of the optimisation was to reduce the damage done by the deposition of acidic
gases such as Sulphur Dioxide. In this case the encoding used was a real number
representation where each generating station was represented by a number between
zero and 100. If for example the number was 20, then twenty per cent of that
station’s maximum generating capacity would be used within a given year.

Assuming an example where there are eight generating stations (in the real ex-
ample there were over forty), then an example of an individual within a population
would be: [35,72,80,41,0,66,7,29]

With thirty five per cent of station one’s capacity being used, seventy two per
cent of station two’s, etc.
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2.2 The Choice of Encoding

There are various arguments for and against using binary and real number en-
coding. The argument in favour of binary encoding is based upon the schema
theory (Holland, 1975), Goldberg (1989).

The basis of the schema theory is that a schema is a similarity template that de-
fines similarities between individuals in a population (often called chromosomes),
at various points within the individuals. For example consider the following ex-
ample from Parmee (2001) which uses three individuals as follows:
0010111001010001
1011101000110100
1011111001110101

The schema or similarity template for these individuals is:
#01#1#100##10#0#
Where # represents ”don’t care” (in effect a mismatch).

The schema theory then looks at the following: ” The length of the binary
string, L, (in this case 16); ” The defining length which is the distance between the
first gene which is not represented by a # and the last gene which is not represented
by a # (in this case 15-2=13) and ” The order of the schema, which is the number
of characters containing a 1 or 0 (in this case 9).

Within a given member of a population, each gene can be represented by one
of three characters (#,0 or 1) and therefore the number of schemata present within
the member is 3L. If the population contains N members, then the total number of
schemata within the population is N3L.

The schema theory states that having a large number of schemata within a pop-
ulation increases the probability that high quality building blocks (i.e. areas within
a chromosome that represent good solutions to the problem being considered) will
be formed. Therefore, the theory says that long, binary chromosomes will tend
to give better solutions. This is linked to Holland’s (Holland, 1975) thoughts on
implicit parallelism within genetic algorithms.

The theory further states that binary strings have a greater information carry-
ing capacity than a real number representation and Holland presents arguments to
support this but they contain assumptions about the similarity of representations
that would be used when comparing real number and binary encoding that are not
necessarily valid.

There are also difficulties that occur when using binary encoding. The most
obvious is that there is usually a need to translate the binary representation (the
genotype) into a form where it can readily be understood by human beings (the
phenotype). Also using binary can lead to excessively long chromosomes which
can be difficult to handle within a computer. Finally there is the so called Hamming
cliff problem.
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Taking a simple example where the answer to a problem is 7

[0111] = 7 BUT [1000] = 8 i.e. Completely different in binary format

This means that for a genetic algorithm to converge on a solution from 7 to 8,
the schema would be completely different (note the problem doesn’t occur between
8 and 9). This is what is called a Hamming Cliff - in other words all the zeros have
to change to ones and vice versa. The problems with this can be partially overcome
by using Gray Scale coding (Table 1) template for table placement

Table 1. Binary and Gray Scale Encoding

Decimal Binary Gray
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0010
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111

The arguments in favour of real number representation are less complex than
those given above, see Parmee (2001). One of the main advantages is that they
completely avoid Hamming cliffs and therefore cope much better with dealing
with convergence type problems. However, the main argument in favour of real
number representation is that it has been proven to work well on a wide variety of
problems.

2.3 Fitness Assessment - The Fitness Function

As stated above, the processes within a GA can be thought of as being similar
to those in Darwin’s theory of evolution where individuals which are better suited
to a given environment, on average, stand a better chance of survival and hence of
passing their genes on to the next generation. It is therefore necessary within a ge-
netic algorithm to have some sort of function that represents the environment. That
is, a function that measures how good a chromosome is in terms of it being a pos-
sible solution to the problem being considered. There is an immediate challenge
that arises here and that is that for many problems, very little is known about the
form of the search space. This can cause difficulties for traditional optimization
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methods but genetic algorithms are able to find good solutions without needing
detailed information regarding the problem being solved. Thus the performance
assessment function for a genetic algorithm is not referred to as an objective func-
tion, as would be the case for traditional optimization methods, but instead, as a
fitness function.

The fitness function is always problem specific so it is hard to give a general
description and instead an example will be given.

Take for example the problem shown in Figure 3 (Griffiths and Miles, 2003).
A load is to be applied uniformly to the top of a space and there is to be a support
at the base of the space. In between, some form of support is needed. If the third
dimension is included, this could be a problem to find the optimum beam cross
sectional area say for a simply supported beam.

Figure 3. The Design Domain

The encoding of the problem is as shown in Figure 4 where the space is split
up into squares (called voxels) and each voxel is represented as a gene in a binary
string (see the upper part of Figure 4). If material is present in a voxel, it is repre-
sented as a 1 and if the voxel is void it is represented as a 0. Thus in Figure 4, the
expected answer for this loading case is an I beam as shown.

However, the challenge for a genetic algorithm would be to generate an I beam
from an initial population in which the members are created by a random number
generator. One of the phenomena to which a beam is subjected is bending, so the
fitness function should contain a function which deals with this. Therefore a cross-
sectional shape is required that keeps normal stress levels, those caused by the
application of a bending moment, within the allowable stress limits while utilising
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Figure 4. The Problem Encoding

the minimal amount of material. Minimising the required material arrives from a
desire to reduce self-weight. For this initial solution only bending moments are
considered with the load being applied uniformly and symmetrically to the upper
surface of the beam and the support being provided in the same manner at its lower
surface.

Such a load case produces normal stresses over the entire cross-section of the
beam which vary in intensity depending upon the shape of the cross section and
the location of material within it. Each solution is evaluated utilising two standard
stress analysis equations. The stress value for an individual active voxel can be
calculated using the bending stress (Gere and Timoshenko, 1997):

My i
I

(1)

where M is the applied bending moment (Nmm), y(i) is the distance of the ith
active voxel from the neutral axis in millimetres, and I (mm4) is the second moment
of area with respect to the horizontal neutral axis.

The second moment of area for the shape (with respect to the neutral axis) is
calculated as Gere and Timoshenko (1997) shown below:

I n
i 1 y i 2A (2)

where y(i) is distance of the ith voxel from the neutral axis of the shape in mil-
limetres, A (mm2)is the area of a voxel and n is the number of active voxels.

The neutral axis is assumed to be a horizontal line that passes through the
centroid of mass of the shape. The voxel representation system applied in this
research reduces the design space to a series of squares of uniform size and density.
Therefore it is acceptable to calculate the neutral axis as being the average position
of active voxels (average position of material).
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NeutralAxis
Ybase

Active
(3)

where Ybase is the distance of the material from the bottom of the design space in
millimetres and Active is the total number of active voxels.

It is evident from a simple analysis of these equations that the distance of an ac-
tive voxel from the neutral axis is most significant in determining the optimal shape
for the cross-section. Increasing the average value of y, will increase the second
moment of the shape and decrease the maximum value of voxel stress. Normal
stresses require material to migrate towards the vertical extremities of the design
space where the normal stress is greatest (forming two symmetrical flanges). A
valid solution to this simplified mathematical model would be any shape that does
not exceed the stress constraint, with the best solutions being those that satisfy
this constraint with the minimum amount of material. As only normal stresses are
currently being considered, there is no requirement for the genetic algorithm to
develop a web (primary shear stress carrier) or any other means of connecting the
two elements.

The fitness function has been designed to minimise the area of the beam (ac-
tive voxels) within the maximum allowed stress. Equation (4) describes the hard
constraint (i.e. must be satisfied) for this problem as follows:

SVoxelMax max (4)

The actual fitness function is given in the following equation. As can be seen, it
is designed to encourage the development of minimum mass, high stress solutions
which meet the imposed constraints. The scaling factors are present within the
function to allow for the different magnitude of the various terms and also to ensure
that each effect is given an appropriate level of importance within the function.

Fitness
1000

Active 1
SVoxelMax A P1 B P2 C P3

(5)

where Active is the number of active voxels and SVoxelMax is the maximum stress
value of any voxel.

P1 SVoxelMax max (6)

P2 SVoxelMax SVoxelMin (7)

P3 Numbero f ExposedVoxelSides (8)

A B C ScalingFactors A 100 B 30 C 10 (9)

max is the maximum stress value permitted in N/mm2within the material and
SVoxelMin is the minimum stress in any of the voxels.
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The variable Active is used in a way which promotes solutions which have
the minimum amount of material as is P3. The other terms in the fitness function
encourage the efficient use of material.

The fitness of an individual is inversely proportional to the number of active
voxels (required material), and hence the search favours minimum self-weight.
To promote efficient use of the material, and minimise redundant stress carrying
capacity, (1/SvoxelMax) is applied so that solutions operate at the most efficient
stress values for the material utilised for the cross-section. P1 is applied to solu-
tions that violate the maximum stress constraint. P1 is the only hard constraint at
this point, and therefore violations are penalised heavily. P2 again encourages the
genetic algorithm to evolve solutions that operate at high stress levels to promote
efficiency. P3 is applied to minimise the development of small holes and isolated
voxels by penalising solutions relative to the number of exposed voxel sides. P3
also aids the development of solutions with minimal material as it requires voxels
to form tightly packed shapes for optimality. Each isolated voxel or small hole will
result in a P3 value of four (four exposed sides), thus encouraging the GA to group
together sections of material.

Scaling factors A, B and C are used to increase the weight of each variable, a
standard practice when applying evolutionary searches. Scaling has been applied
to prioritise the satisfaction of constraints over criteria. During initial generations
the scaling factors for constraint violations are set relatively low to allow the ge-
netic algorithm to explore the greatest range of potential solutions. During the final
generations, the scaling factors are increased to ensure the final solution meets all
constraints. Additionally, the scaling factors are applied to ensure that no single
variable dominates the search. This is necessary as the range of values for each
variable varies significantly. For example, during final generations, Active has an
average value of 750 per solution, where as P1 tends towards +/- 3. These penal-
ties can ensure all constraints are satisfied simultaneously, without any undue bias.
Scaling factors are also applied to the criteria elements of the fitness function to
ensure no one criterion dominates another.

So what sort of results does this fitness function give? The answer depends
on factors other than just the fitness function but Figure 5 shows typical solutions
evolved by the genetic algorithm after the 2000 generation.

Table 2 highlights the details of the best evolved solutions, at the end of a 2000
generation run (60000 evaluations, i.e. a population size of 30 chromosomes).
The tests were conducted with a design space of 300mm by 175mm and an ap-
plied bending moment of 200,000,000 Nm and a maximum allowable stress of
100 MPa. In addition to near optimal shapes being achieved (within 5 voxels of
the known optimum), the solutions are within the stress constraint limits. The ge-
netic algorithm has a success rate of approximately 90 per cent at locating near
optimal solutions.



www.manaraa.com

12 J. Miles

Figure 5. Results from 3 separate runs achieved with two dimensional genetic
operators, for bending only so no webs

Table 2. Results of tests conducted by Griffiths and Miles (2003)

Run Percentage Active Bending Stress Surface Area of Optimal Shape

- Voxels N/mm2 Exposed Voxel Sides Achieved

Initial Population - Average 155 Average 1925 Not Applicable

1 34.38 100.01 172 Yes
2 34.52 99.09 179 Yes
3 34.42 99.85 175 Yes

The above example shows how for a relatively simple problem, the fitness func-
tion can be fairly complex and also how it typically contains a mixture of objectives
and constraints. However, as can be seen from Figure 2, there are still many other
aspects of a genetic algorithm to be considered and without careful consideration
of these, the above results would not have been possible.

2.4 Selection

Having determined the fitness of each chromosome (i.e. potential solution to
the problem), the next stage is to select from the population those chromosomes
that will go forward to the mating pool. The mating pool is then used to breed the
chromosomes of the next generation so those individuals that are not selected will
not be able to pass on their genetic information to the next generation. There are
various methods of selection used with genetic algorithms but the basis of nearly
all of them is that the chances of the fitter individuals being selected for the mating
pool is stronger than that of the less fit.

There are two common methods that are used, the roulette wheel and tourna-
ment selection.

With the roulette wheel, a conceptual wheel is constructed, with each chromo-
some being given a slice of the wheel which is proportionate in size to its fitness.
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So a fit individual is given a relatively large slice and a less fit individual a smaller
slice. The wheel is then ”spun” (in reality a random number generator is used) with
the result being an angle between 0 and 360. The selection operator determines
which chromosome’s slice covers the resulting angle and that individual is then
passed through to the mating pool. The wheel is spun sufficient times to provide
enough individuals for mating. Note that it is entirely possible for an individual to
be selected more than once.

The tournament selection method is simpler but generally more effective. In
its simplest form two individuals are selected from the population and the fitter of
the two is allowed to go forward to the mating pool. More complex forms select a
greater number of individuals but the process is still the same with the fittest going
forward.

With both these selection methods, it is entirely possible that the fittest indi-
vidual may not be selected for the mating pool. To overcome this problem, many
implementations of genetic algorithms use some form of what is known as elitism
where the fittest individual is automatically placed either in the mating pool or it
is passed directly to the next generation. Sometimes rather than just the fittest in-
dividual, the fittest X percent (say 10 percent) are chosen. Some people argue that
elitism is a bad thing and in such cases the usual procedure is to filter off the fittest
individual from each generation and keep them on one side in a separate location
so that if the individual is the fittest produced by the genetic algorithm during the
entire run, the information is not lost.

2.5 Crossover

Having chosen the chromosomes that are to be bred to form the next generation,
there are two main operators that typically form the breeding process. The first
of these is crossover and this is intended to mimic the processes that occur in
nature when two individuals come together to create a new individual. In genetic
algorithms, there are many forms of crossover, the simplest of which is single
point.

The process starts with the selection of two individuals from the mating pool.
For convenience, we will assume that these are both binary strings as follows:

[1000100100001] [0111100011001]
Using a random number generator, a point is chosen some where along the

length of the two chromosomes (say between the 5th and 6th bits) and the strings
are then cut at this point and the new chromosomes formed by taking the left hand
end of the first individual and combining it with the right hand end of the second
and vice versa. The result is as follows:

[1000100011001] [0111100100001]
Thus two new individuals are formed from the two parents. The process con-
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tains a significant degree of randomness about it. There is deliberately no attempt
to determine whether or not this is a good point at which to cut each individual be-
cause although in this generation the result may not be advantageous, it may result
in another generation or two in some further recombination which will give good
results. This is both a strength and a weakness of genetic algorithms. Their ability
to generate new and interesting results enables them to search widely throughout
the problem space and as the search starts to converge on certain areas of the search
space, the crossover occurs between high fitness individuals and so should result
in similarly fit individuals. However, towards the end of the process, when conver-
gence is almost complete, crossover can be very disruptive and at this stage it can
in some circumstances be advantageous to stop the genetic algorithm and instead
apply a more traditional, deterministic algorithm such as hill climbing.

There are many other forms of crossover. The basis of most of these is the use
of a mask as shown in Figure 6. This shows how a mask can be used for one point,

Figure 6. Crossover Mechanisms

two point and multi-point crossover. In effect the mask is another binary string
of the same length as the chromosome. In each position on the mask is either a
1 or a 0. If there is a 1, then that part of the chromosome remains unchanged. If
there is a 0, then the corresponding bit from the other parent is imported into the
chromosome. This gives the basis of how crossover works but as will be show
later in the section on topological reasoning, the choice of what mechanism to use
can have an impact on the ability of the algorithm to search effectively.
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2.6 Mutation

As mentioned above, there are two commonly used operators with genetic al-
gorithms. Crossover is used to combine attributes from the two parents but in
nature there is also another mechanism at work and this is mutation. This in na-
ture allows species to change their characteristics over time and hence introduce
features that were not present in the original population. In genetic algorithms, the
working of mutation is very similar. Within the original population, there is only a
limited amount of genetic information and while crossover can combine and mix
this information in new ways to try and find desirable results, it is possible that
from time to time, the introduction of new material will be useful. This is the basic
thinking behind the mutation operator.

Mutation has to be used carefully but if this is done, then its impact can be
highly beneficial. If there is no mutation, then often the result is that the genetic
algorithm fails to find the best areas within the search space. However, if too much
mutation is allowed, then its impact can become disruptive and the process can
degenerate into a random search.

The typical method of applying mutation for a binary chromosome is to define
a so called mutation rate (typically about 0.01) and then generate a random number
between zero and one for each bit. If for a given bit, the number is less than the
mutation rate, then the bit is ”flipped”; that is a 1 is changed to a 0 or vice versa.
To show how this works an example is given below. For simplicity, a population
of just 3 chromosomes will be used, with each chromosome containing 4 bits. The
original population is:
[1010] [1110] [0010]
For each every bit of each chromosome a random number in the range zero to one
is generated as follows:
0.801,0.102,0.266,0.373
0.120,0.096,0.005,0.840
0.760,0.473,0.894,0.001
A mutation rate is then applied. This is typically a value that is fixed at the start
of the execution of the genetic algorithm and it has to be in the range of zero to
one (the same as the random numbers). Any bit whose random number is less than
or equal to the mutation rate is then bit flipped (i.e. a one is altered to zero and
vice versa). The mutation rate is typically set at a low value, otherwise the search
degenerates. For this example, the mutation rate is set at 0.008. As can be seen
only two numbers are less than 0.008 so only two bit flips occur to give:
[1010] [1100] [0011]
With real number chromosomes, mutation is slightly more complex but works on
similar principles. Typically two types of mutation operator are used with real
numbers, jump and creep. The former allows a given number in a chromosome
to change to any value within the allowed range and the latter just makes a small
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change. The way that this is then applied is to initially generate a random number
between one and zero for each member of the chromosome and if the number is
below the mutation rate, the member is selected for mutation. A further random
number between one and zero is then generated for each member. If the number
if below say 0.5, then the jump operator is used and if it is equal to or above 0.5,
then the creep operator is used.

Referring to the work of Bradshaw (1996) on power stations, for each mem-
ber of a chromosome, the possible range was between zero and 100 percent. In
practice the upper limit was set at 80 percent to allow for maintenance time, so the
jump operator allowed the number to be mutated to any value between 0 and 80.
The value to be applied was again determined by using a random number genera-
tor. The creep operator allowed the number to be change by 5 percent, again with
the value being determined randomly. For this particular problem, it was found to
be advantageous to apply the mutation operators equally at the start of the search
process (i.e. below 0.5 use the jump operator and equal to or above 0.5 use the
creep). However as the search progressed, the jump operator was found to be too
disruptive when applied at a high rate and so the rates were progressively changed
as the search progressed, so that in the later stages, the jump operator was rarely
applied.

2.7 Inversion

There is another operator that is sometimes used. In this the entire order of
the chromosome is swapped so that the right hand end becomes the left hand end
etc. So for example the chromosome [00001111] would become [1111000]. In
practice, inversion is rarely used because it is generally found to be too disruptive.

2.8 Convergence

With most problems that are tackled using genetic algorithms, information
about the final answer is completely lacking and therefore it is not possible to
say, with absolute certainty, when the search process is complete. In such cir-
cumstances, it is usual to let the search progress for a pre-determined number of
generations. However, some means of checking that the answer obtained is prob-
ably somewhere near the best possible is necessary. One way of checking for this
is to plot a graph of the change in the fitness that occurs as the search progresses.
Typically the values plotted are for the fittest individual within a population, al-
though it is also usual to plot the average fitness of the population as well. An
example plot of the fittest individual is given in Figure 7. In this particular case,
the correct answer to the problem is known and it is given a fitness of 100.

As can be seen from the Figure 7, the process gets close to the best answer
sometime around the 300th generation and then slowly converges so that by the

16
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Figure 7. An example of change in fitness by generation

600th generation, it finds the best answer. This is for a case where the answer
is known, but for examples where the answer is not known, one would hope that
the change in fitness will follow a similar path although to some extent this is a
function of the problem space.

In cases where the problem space is reasonably continuous, then one would
expect the behaviour to be similar to that shown in Figure 7. However, even when
the process follows a reasonably smooth curve, it is not possible to guarantee that
the answer obtained is a good one and sometimes a sudden jump occurs in the
fitness curve. This for example could be when mutation takes the search to a
different area of higher performance.

Where the problem space contains significant discontinuities, then one would
expect a plot of fitness against generation to be much less smooth than that shown
in Figure 7. In such cases, it is much more difficult to judge with confidence when
the process seems to have converged.

There is an alternative approach to the above which has been developed by
Parmee (1998). His approach has been specially developed for design problems
where rather than finding ”the best” answer, one is more concerned with learn-
ing about the problem space and finding areas of high performance. The details
of Parmee’s method are too complex to be explained here but the overall con-
cept is that at each generation, chromosomes that pass a pre-determined level of
fitness are copied to a separate area where they are stored and at the end of the
search process, the contents of the area are presented to the user using a variety
of techniques including box plots and hyper planes. The plots can be presented
in a variety of formats including variable space and objective space plus the fit-
ness landscape. The approach is sophisticated and powerful and is recommended
to anyone who wishes to progress beyond the basic techniques that are being dis-
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cussed here. There is also a simpler and less powerful technique that is sometime
employed using Pareto fronts. Good examples of the application of this to struc-
tural engineering are to be found in the work of Khajehpour and Grierson (1999)
and Grierson and Khajehpour (2002).

2.9 Summary

The above covers the basic techniques for developing a so called canonical ge-
netic algorithm. There are many variations on the techniques described but for get-
ting started and learning about genetic algorithms, it is recommended that initial
work uses the above approaches and then develops further complexity as neces-
sary. The additional techniques are to be found in the literature. Also, there are
other very useful algorithms in addition to genetic algorithms and again once the
basics of evolutionary computation have been mastered, it can often be beneficial
to try other procedures.

3 Using Genetic Algorithms for Design

3.1 Introduction

This section will build on the description of a canonical genetic algorithm and
show how the techniques can be used to solve problems in design. The problem
that will be examined is the conceptual design of typical commercial buildings
such as multi-storey office blocks.

3.2 Building Design

In structural terms, a typical commercial building such as an office, a hospital
or a hotel, consists of columns and beams with the floors being either concrete
or composite slabs. The columns and beams are usually either steel or concrete,
although sometimes timber can also be used. The design of such a building is
undertaken by a team of designers which includes architects, structural engineering
and building services engineers. These people are brought together at the behest
of who ever is commissioning the building (typically called the client) to interpret
the client’s needs and produce a satisfactory design.

Design can be thought of as consisting of a number of stages. The very earliest
stages go by various names but typically are called client briefing or brief devel-
opment. Briefing starts with the client expressing what sort of building they want,
what they will use it for and what their overall parameters are in terms of cost
and the areas required. There then follows a series of conversations between the
client and one of more of the designers to develop these basic ideas into a more
comprehensive statement of what is required. At this stage, typically there are no
drawings other than a plan of the area in which the building is to be located (i.e. a
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site plan).
The next stage of the process is then called conceptual design. This is where

most of the basic decisions regarding the form of the building are taken and typi-
cally by the end of this process, 80 per cent of the costs of the building are fixed
so it is vital that the right decisions are made at this stage. Generally during con-
ceptual design, the details of the design have yet to be fixed and so often decision
making is based on rough estimations and heuristics rather than absolute values.

Following conceptual design, the overall form of the building is fixed and there
then follow a series of stages in which detailed calculations are undertaken to check
out the performance of various components. These typically involve numerical
analysis techniques such as finite elements and finally the detailed drawings and
other contract documents are produced.

In this section, the discussion will focus on the conceptual design of a building
and how and why this should be supported by appropriate computational tech-
niques. However before this discussion starts, one very important ground rule has
to be established. In all complex decision making processes, it is vital that the
decisions are made by human beings, not computers. Computers are excellent
at processing and handling large amounts of information but they do not possess
knowledge about the world (other than that which has been specifically encoded
within software) and they lack common sense and judgement. So what has to be
aimed for in any decision making system, is a process where the human being and
the computer working together are able to produce a result which is superior to
that which can be produced by other techniques. To achieve this the process must
make the best use of the strengths of both the human being and the computer.

Typically when undertaking the conceptual design of a building, each design
will look at several options. For example, the structural designer will look at a
steel and concrete option and possibly they may look at one or two variations of
each of these. So typically each design may look at as many as 6 possible options.
Khajehpour and Grierson (2003) estimate that for the design of a typical building,
at the conceptual design stage, there are at least 400,000 possible choices from
which the design team can choose, so if each designer looks at 6 options, there are a
lot of possibilities that have been ignored. Of these 400,000, it is possible that some
will be poor choices that any experienced designer would automatically reject.
Also some may be very similar but nevertheless, the evidence is overwhelming
that unless they are extremely lucky, the design team will manage to do no more
than produce a design solution that satisfies the constraints, a so called satisficing
solution.

So what is needed, is something to enable the design team to find good solu-
tions from the range of possible options and it is here that genetic algorithms can
be of use. The following description is based on the work of Sisk (1999). The
system is called BGRID. The discussion will first look at the features of BGRID
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before then taking the reader through a typical user session.

3.3 Representation

The representation can be thought of as the choice of features of the problem
that are to be included in the chromosome and the encoding method (real num-
ber or binary). It is usually advantageous to keep the representation as simple as
possible. The BGRID chromosome contains 4 types of information:

The (x,y) coordinates of each column centre. As the number of columns
varies between solutions this means that BGRID does not have a fixed length
of chromosome.

The structure-services integration strategy. This describes how the services
(i.e. ventilation, plumbing, electricity, etc) are incorporated with the struc-
tural elements above the suspended ceiling. There are 3 options within
BGRID, these being, separate, partially integrated and fully integrated. The
option chosen affects the grid because for each option there are limited num-
ber of structural solutions, which in turn dictates the economical column
spacings. The choice of structural system influences the floor to floor height
and hence has a major impact on cost.

The environmental strategy. There are 3 options within the system, natural
ventilation, mechanical ventilation and air conditioning. The choice of these
is influenced by factors such as the building location and building depth and
they have a major impact on the height of a building and hence its cost.

The final component of the genotype is the clear floor to ceiling height. The
overall height of a building has significant cost implications and also dictates
whether or not it can be illuminated using natural daylight.

Real number coding is used. Each column is represented by two integers, one
for the X and one for the Y co-ordinate. The structural services and environmen-
tal strategies are represented by integers and the floor to ceiling height is a real
number. A rather short example of a genome is given in Table 3. The left hand
part, consisting of 6 numbers, contains the X column coordinates, the middle part,
consisting of the next 6 numbers, contains the Y column coordinates and the right
had end contains the other parts of the genotype.

Table 3. An example genome

0 25 50 75 90 100 0 20 40 65 80 90 0 1 2.9
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3.4 Reproduction, Crossover, Mutation

In BGRID only the fittest member from a given generation is automatically
passed through to the next generation. Roulette wheel selection is used to deter-
mine which chromosomes are to be passed through to the mating pool.

The crossover mechanism has to take account of the structure of the genome
which is split into 3 distinct segments. To avoid creating a lot of illegal solutions
in crossover, the crossover operator is applied separately to each of the 3 parts of
the string. Single point crossover is used for each part, with the actual location
within the string being chosen randomly. If crossover produces column spacings
which do not fit the constraints imposed by the various grids, the nearest suitable
value is determined and the illegal value altered to conform. Where crossover
produces a chromosome where the values are out of order (i.e. not all the values
increase from left to right) the ordering is adjusted to suit. Also a further check is
run to determine the column spacings. Spacings which exceed 18m (the maximum
spacing allowed by the structural systems used in BGRID) are reduced by inserting
another column. Where columns are too close, one column is removed.

The mutation operator uses a mutation rate of 0.01. For the genes which con-
tain the column coordinates the range of mutation is restricted, as is explained in
the following example:

For the gene selected for mutation, the first process is to look at the values of
the 2 genes on either side of it (obviously for genes at the end of a segment one
can only look in one direction). So taking for example the gene shown in table 1.
If the 3rd gene with a value of 50 is assumed to be the one that is to be mutated,
it is necessary to ensure that the mutated value is consistent with the various grids
that have been defined for the building. So the mutation process starts by setting
up an array of possible values which are consistent with the grid spacings and fit in
between the 2 adjacent column spacings (in this case 25 and 75m). The new value
is then chosen randomly from the array of values. If for this example it is assumed
the modular grid spacing is 1.5m and the smallest preferred grid dimension is 3m,
then an array of grid spacings can be generated that starts at 28m and goes in 3m
increments to 72m. A value is then chosen at random from the array (say 55m)
and this becomes the new value. For the 3rd part of the genome, the values are
mutated in the normal way.

3.5 The Fitness Function

The development of BGRID was undertaken in close collaboration with prac-
tising designers. A fitness function that allows the user to search the design space
in different ways to examine the impact of various constraints is something, which
the designers identified as being a vital feature. Such features which allow the user
to operate the system in a flexible manner, allowing a full exploration of the design
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space while leaving the final decision to the designer, are a desirable feature of any
design software. For the BGRID fitness function, this flexibility is achieved by
allowing the user to alter the weights of the individual criteria within the function.
This feature also allows for the different types of users (e.g. architects, structural
engineers, etc.) to alter the bias of the search to suit their own discipline specific
viewpoint. In more detail, the fitness function works as described below.

The first part of the fitness function checks the hard constraints. If these are not
satisfied or acceptable, the implications are serious and the associated solutions
will be penalised. The checks conducted for these constraints include:

Check if overall height is less than the height restriction (if present);

Check if the design option is compatible with the chosen structural system,
particularly with respect to span lengths.

Check the uniformity of grid (this has a significant influence on buildability)

If the above are not satisfied a penalty function is applied to the individual’s
fitness. The value of penalty varies for each constraint. The fitness of the indi-
vidual design solution is multiplied by the inverse of the penalty function with the
penalties being as follows:

Height
PF1 1; IFheight heightrestriction (10)

PF1 0 : IFheight heightrestriction (11)

Design Option Suitability

PF2 PF2 0 25 (12)

Uniformity

PF3 PF3 0 25 (13)

The way the above are applied is as follows:

For the first penalty function, its value is 1 if the constraint is violated and
the overall height is greater than the height restriction and 0 if the overall
height is within the set limits.

For the second penalty function, the value is initially 0 and then is increased
by increments of 0.25 for each bay that doesn’t fall within the economic
span range of the structural design option.

The third penalty function also increases by increments of 0.25 for each
different bay dimension, (e.g. if there are three bay sizes of say 9, 12 and
15m within the grid, a penalty function of 0.5 will be applied. If all the bay
sizes are the same, then the penalty function is zero).
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The three penalty functions are then added thus:

PF PF1 PF2 PF3 1 (14)

The second part of the fitness function deals with the soft constraints. Soft con-
straints are more difficult to quantify and the way this is dealt with within BGRID
is that each individual is assessed relative to all the other individuals generated up
to that point. That is, the worst and the best examples of each criterion are used to
determine how good the design solution is for this particular aspect of the design.
This is achieved as follows:

FIOBJ
FI FIBAD

FIGOOD FIBAD
(15)

where: FIBAD=the value of the worst individual generated up to that point, FI-
GOOD=the value of the best individual generated up to that point, FI=the value of
the evaluated parameter for the individual under consideration.

The objective is to maximise the value of FIOBJ. Each of the three components
below can be weighted by the user to reflect their importance for a particular search
strategy. This is the main mechanism by which the user influences the search. The
weight factors range from 0 to 4, with 0 being unimportant and 4 being highly
significant. The three components are:

Large clear span,

Minimising cost,

Minimising environmental damage.

The Large Clear Span component enables the user to search for solutions with
as large a span as is feasible, within the constraints of the design. Often clients
prefer buildings with as much column-free space as possible because of the greater
flexibility of such configurations.

When the user opts for the Minimum Cost being significant, the system doesn’t
actually optimise on real costs but features which are cost significant, these being:

Total weight per floor area (kg/m2)(Including steel, slab, deck, reinforce-
ment, services)

Overall building height (m)

Net/gross floor area ratio

The aim is to minimise the first two factors and maximise the third. It was
felt by the designers who collaborated in the development of BGRID that such an
approach, rather than using quantities and costs, was sufficiently accurate at the
conceptual design stage to guide the search towards low cost solutions.

A similar approach is used for the Minimising Environmental Damage compo-
nent with the following aspects being considered:



www.manaraa.com

24 J. Miles

Depth of space,

Clear floor-to-ceiling height

Location

The depth of space is determined by the dimensions of the floor plate (making
allowances for atria etc.) A higher than normal floor to ceiling depth is required
if natural daylight and natural ventilation are to be viable options but if a building
is situated in an urban environment the only ventilation strategy that is viable is
air-conditioning.

The above formulae are summed to give an overall fitness as follows:

FI
FIOBJ WF
PF w f

(16)

where: FIOBJ = sub-fitness of individual for each evaluating parameter (from
equation XX), WF = User determined weighting factor for the given evaluating
parameter, PF= penalty function for the hard constraints.

This determines the raw fitness of each individual in the population and is
used to determine the rank order. The Standard Fitness Method, see (Bradshaw
and Miles, 1997) is then used to assign pre-determined fitness values which ef-
fectively determines the degree of selective pressure assigned to each individual.
The pre-determined fitnesses are calculated using an algorithm based on the nor-
mal distribution and are then used to determine fixed slot sizes on a roulette wheel.
The individual with the largest rank order (i.e. raw fitness) is then given the largest
slot, the next in rank order the next largest etc.

3.6 BGRID: A Typical User Session

As with any design system, BGRID requires some initial information from the
user regarding the building which is to be constructed. The data input is divided
into four sections:

Geometrical information (plan dimensions and number of floors). The de-
sign is restricted to rectangular floor plans. The user is asked for X and Y
dimensions and the number of stories. During the search process, BGRID
will almost certainly produce some solutions which do not exactly conform
to the required plan dimensions but which are high fitness solutions. These
are not penalised by the fitness function as it is assumed the designer would
wish to be aware of them.

Site location. The user is given 3 options to choose from, urban, suburban
and rural. Also the user is asked to specify any overall height restrictions on
the building (usually imposed as a planning requirement) and the maximum
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desirable floor to ceiling height. The above factors have a significant bearing
on the available options for lighting and heating and ventilation.

Location of architectural spaces, i.e. cores and atria (Figure 8). The user
is first presented with a screen which asks for the maximum occupancy (in
terms of number of people) of each storey and from this a minimum width
of fire escape can be calculated using the rules from BS 5588 Part 3. The
process then moves onto fixing the number and location of cores and atria (if
any). In the search process, BGRID may, in a given individual, make slight
adjustments to the sizes of cores and more often to atria, to better fit them to
the structural grid.

Dimensional constraints (see below)

Figure 8. Specification of Core and Atria Spaces

The dimensional constraints determine the grids that can be generated for the ge-
netic algorithm’s initial population. The user is asked to input the various grid
dimensions, which are to be used by the system. The user chooses from a menu
which contains all the available grid sizes and these are then used within BGRID
as follows.

The building dimensions are built up in multiples of the initial modular (i.e.
constructional) grid. Planning must take into account apparently insignificant ele-
ments, such as fluorescent tubes, as their cumulative impact can have a significant
effect on the layout of the building. Based on advice from the designers who col-
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laborated in the BGRID development, the user is offered a choice of initial modular
grid dimensions of 1200, 1500 and 1800 mm.

The next dimension is the critical grid, this being the absolute minimum dis-
tance that can separate two adjacent columns. This measurement is determined by
the intended use of the building. Again, based on advice from the industrial col-
laborators the available critical grid dimensions within the system are 2400, 3000
and 3600mm.

Following this, the user inputs the preferred minimum bay dimension (i.e.
the preferred distance between two adjacent columns). The users are also given
the opportunity to specify the maximum preferred distance between two adjacent
columns. These constraints are then used to limit the form of the grids generated
for the initial population, to ensure that they meet the designers’ requirements.
This results in a massive reduction in the search space, which is both an advantage
and a disadvantage. The benefit is that the problem is much less complicated to
solve but occasionally the search space is so constrained that the search is unable
to find solutions which are significantly better than the best of the initial (i.e. ran-
dom) population. The available minimum and maximum bay dimensions within
BGRID are given in Table 4. Again these have been provided by the industrial
collaborators.

Table 4. Building Bay Dimensions

Available Minimum Available Maximum Bay Dimensions
Bay Dimensions (mm) Bay Dimensions (mm)

4500 6000
4800 7200
5000 8000
5400 8400
6000 9000
7200 10000
8400 18000

The next part of the system allows access to all the background information,
such as the various structural configurations and section sizes used by the system
to generate the design solutions. Various default sizes are used within the system
but the user is free to change all these as is described below.

3.7 Creating the Initial Population

In the initial population for each individual the bay dimensions are chosen
randomly although obviously account has to be taken of the overall dimensions
input by the user and the ranges of available values are restricted based on the
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dimensions of the grids which have been indicated by the user. The main challenge
is to generate column layouts which do not violate the constraints. The other
parameters are likewise generated randomly using values from the available pre-
determined ranges.

3.8 Component Sizing

BGRID sizes structural components using span/ depth ratios. This level of
detail was felt by the collaborators adequate for conceptual design, although sub-
sequent work in this are (see below) has used a far more accurate approach. The
span/depth ratios have been obtained from manufacturers’ catalogues. As with the
section sizes, the user is free to override any of the system’s decisions regarding
section sizes and span depth ratios and they can, if wished, insert their own. The
provision of facilities that enable the user to access and adjust the assumptions and
defaults within BGRID is a deliberate strategy. The collaborators asked for a sys-
tem which was both transparent and flexible. A typical example of the information
provided for a given structural flooring system is shown below in Figure 9.

Figure 9. Short Span Structural System Background Information

Currently BGRID contains information regarding 3 types of flooring system.
For the short spans there is the Slimflor system (Slimflor is a trademark of CORUS
plc.). In this system, the structural and services zones are fully separated. The
Slimflor beam is integrated within the steel deep deck, thus minimising the depth
of the structural zone. This is advantageous for a highly serviced building, al-
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lowing complete freedom for the horizontal distribution of services. Each of the
environmental strategies requires different depths of zones for items such as air
conditioning and ventilation and BGRID contains suitable defaults for each strat-
egy. The user is free to change any of these default depths if this is necessary. The
ties, which provide frame stability, can be selected from a list of angles provided
within BGRID. These dimensions are then used to calculate the overall height of
the building. With all the flooring systems, BGRID contains values of minimum
and maximum allowable spans.

For the medium span system, a composite steel beam and concrete slab system
is provided with the structural and environmental zones being partially integrated.
The default vertical dimensions for each ventilation strategy are also shown within
the system and as with the Slimflor, all default information can be changed if
necessary.

For the long span system, a steel stub girder and composite slab system is
included. The maximum span for this system is 18-20 metres. Three typical grids
exist and these are fully documented within BGRID. The grid descriptions include
details of the bottom chord, secondary beam and overall depth of the structure.
Again, the user is free to change all of these values. For the long span system, the
services are fully integrated within the structural zone. Further information on the
flooring systems is given in Sisk (1999).

3.9 Controlling the Search

The next part of the user interaction concerns the search process and how to
guide this by altering the fitness function weights. As described above, the fitness
function contains 3 components, the aim of these being:

Minimising cost

Minimising clear span

Maximising use of natural resources

BGRID allows the user to weight the importance of each component using
weight factors, which range from 0 (irrelevant) to 4 (extremely important). The
next step is to activate the genetic algorithm, which generates an initial population
of 50 solutions randomly within a confined search space. As explained above,
each solution contains information about the column grid, the structural system,
the environmental strategy and details of the vertical dimensions of the building.
This information makes up the genotype of the genetic algorithm. The genetic
algorithm runs for 50 generations with the whole process taking approximately 20
seconds. Fifty generations has been found to be more than sufficient for all cases
tested to date.
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3.10 Search Results

The user is able to access information regarding maximum, average and mini-
mum fitnesses for each generation. Details of the ’best’ solution for each genera-
tion are provided in both textual (Figure 10) and graphical form, the latter showing
a floor plan with column spacings and positions of cores and atria (if present).

Figure 10. Text Based Design Summary

Also, the system provides the best design solution in both graphical and nu-
merical form for each of the short, medium and long span structural systems. The
planning grid, the structural grid, the vertical dimensions, overall height of build-
ing, weight of steel and total weight of floors are provided, as is the net/gross floor
area, the wall/ floor area ratio, the environmental strategy and the fitness. The user
is able to edit the design solution, for example moving the position of the cores
or adding an atrium. BGRID automatically checks any amendments to ensure that
none of them violate the constraints and re-evaluates the design working out a new
fitness value. This allows the user to see how beneficial their changes are.

3.11 Evaluation

BGRID has been developed in collaboration with practising designers and has
been evaluated throughout its development, by architects, structural engineers and
services engineers. Although in the earlier stages some teething problems were
identified, in general, and especially towards the end of the development process,
the response to BGRID has been very positive. Evaluators appreciated the flexible
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way in which BGRID could be used to investigate design problems. Also they
believed that the level of detail, both in terms of the design and the underlying
calculations, was correct for conceptual design although as stated above, further
work by the author has used more accurate approaches. One of the advantages of
using computationally assisted conceptual design, is that the level of accuracy can
be increased, thus reducing risk.

3.12 Further Developments

One feature of BGRID that is very limiting is that it can only cope with build-
ings with rectangular floor plans. This deficiency has been looked at by Shaw et al.
(2005b) who developed a genetic algorithm based method for designing buildings
with orthogonal boundaries. To achieve this polygon partitioning techniques are
used to decompose a floor plan into rectangular sections. This further development
of BGRID is called OBGRID In terms of data requirements, the main difference
between BGRID and OBGRID is that for the latter, the user has to fully define the
shape of the building. As the shape is more complex than just a single rectangle,
this is a somewhat more involved procedure for OBGRID. However as OBGRID
breaks all areas down into rectangles, the discussion will start by looking at how
OBGRID deals with a rectangle. The basic chromosome for a rectangle is identical
to that used for BGRID (see Figure 11 and Table 3) with the first part containing
the X column spacings, the second the Y column spacings and the third part the
structural system, services integration / environmental strategies and the floor to
ceiling height.

Figure 11. Example initialised, rectangular genome
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3.13 Initialising a Rectangular Genome

Rectangular floor plans are initialised by considering the genome’s three sec-
tions (Figure 11):

Section 1: starting at the upper left hand corner of the floor plan (it is always
assumed that the top left hand corner has the local coordinates (0,0)) the
algorithm generates random column spacings in the x direction until the end
of the floor plan is reached.

Section 2: restarting at the upper left hand corner, the algorithm generates
random column spacings in the y direction until the end of the floor plan is
reached.

Section 3: The final section is initialised with randomly selected variables.

Unlike BGRID, no effort is made to constrain column positions to realistic spac-
ings. This is to make the GA search for solutions in both the feasible and infeasible
regions and hence improve the search. However, the fitness function does penalise
individuals that contain a range of column spacings. This is to encourage a degree
of uniformity in column spacings, which aids ’buildability’.

3.14 Evolutionary Operators

Genetic algorithms search the solution space by using biologically inspired
operators. However because the genome is divided into 3 distinct sections and
variable length genomes are used, the evolutionary operators have been amended
to reflect this:

Mutation: used to inject new solutions into the population improving the
search by (hopefully) prevent premature convergence (Goldberg, 1989). Hav-
ing selected an individual’s genome a new value is generated for a random
gene. If the mutation operator selects a gene from sections 1 or 2 (Figure
11), the gene is replaced with a randomly generated value between 0 and the
limits of the floor plan. Unlike BGRID, which restricts the new spacing to
a value between the two adjacent genes, OBGRID simply generates a ran-
dom spacing and, if required, sorts the genome so that the column spacings
increase from left to right. If a gene from section 3 (Figure 11) is chosen, it
is mutated as normal.

Recombination: used to exploit the information already in the population.
OBGRID employs a single point crossover operator. Single point crossover
is used because it is simple to implement even with variable length genomes
(as in OBGRID). However rather than applying the crossover operator on
the whole genome, it performs a separate crossover on each of the genome’s
three sections and happens with BGRID.
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3.15 Selection

OBGRID uses the tournament selection technique (Goldberg, 1989), which
has been found to give better performance than the roulette wheel method used in
BGRID.

3.16 Fitness Function

The fitness function assigns a single numerical value to an individual that re-
flects how ’good’ it is (although a multi-objective fitness function might be more
appropriate, however the goal of this work is to develop a representation). The
basic form of the fitness function is the same as that used in BGRID although OB-
Grid uses a quadratic penalty function, which assigns a greater penalty to a larger
transgression.

3.17 Illustrative Example: Rectangular Building

The following test case was designed to assess OBGrid’s performance.

Building dimensions: 60m x 18.2m,

Height restriction: none,

Population Size = 100,

Maximum Number of Generations=50,

Tournament Selection (size=2),

Elitism used,

Probability of reproduction = 0.1,

Probability of Mutation = 0.3,

One point crossover,

Crossover probability = 0.6,

Real encoding

Random initialisation with no seeding.

The fitness is based on the overall height (Lower is better but with constraints),
column spacing compatability and column spacing uniformity.

3.18 Results

The performance graph (Figure 12) shows the fitness of the best of generation
during the run, while (Figure 13) indicates the optimum layout. Note that unlike
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Figure 12. Fitness progression for OBGRID

Figure 13. Rectangular Building Results for OBGRID

the example given above of a plot of convergence, in this case the improvement
in fitness occurs in distinct steps rather than being a smooth curve. This reflects
the nature of the search space. The best solution was found in generation 46 and
proposes using the long structural system with spacings of 20m (n.b. the maxi-
mum length restriction applied on BGRID is not imposed here) and mechanical
ventilation.

3.19 OBGRID and Orthogonal Buildings

Having shown how rectangular buildings are dealt with, the discussion will
now look at how OBGRID partitions an orthogonal floor plan into rectangles and
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then uses the rectangular methodology described above to design a layout. How-
ever an additional complication is the need to ensure column line continuation
throughout the building, which is achieved by using an ’adjacency graph’.

3.20 Polygon Partitioning

Computational geometry (Shamos, 1978) is the study of efficient algorithms
(usually computer based) and data structures for solving geometrical problems.
The partitioning of polygons is a major topic in this field and several algorithms
have been developed. However a ’sweep line’ approach was considered the most
appropriate for column layout design. Sweep lines techniques (Rourke, 1998)
move an imaginary line, the ’sweep line’, over a polygon from top to bottom or left
to right. During a sweep, the line is stopped at ’event points’ when the polygon
is partitioned. In this work, event points are any reflex vertex on the boundary
(Figure 14). Partitioning is completed in two stages:

Figure 14. An example sweep line

First stage: a line is swept from top to bottom. When the line encounters
an event point, it extends the relevant boundary edge horizontally across
the floor plan until it encounters another edge and splits it, at the point of
intersection. This partitions the building into several, ’thin’ rectangles (the
left hand side of Figure 15).

Second stage: a line is swept from left to right across the boundary, further
partitioning the rectangles created by the first stage: creating a grid pattern
(the right hand side of Figure 15). It should be noted that for each floor plan,
there is a unique partitioning. Therefore once an orthogonal floor plan has
been partitioned, no further partitioning is required (during the search).

An adjacency graph is used to ensure column line continuity throughout the build-
ing and to tell the genetic algorithm which sections of the building are connected
to one another.
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Figure 15. The Two Stages of Partitioning

With the floor plan decomposed into a grid of rectangles, each partition must
now share at least one edge with another partition (with an upper limit of four).
These edges become vital during the evolutionary process because they will be
used to prevent the genetic algorithm from generating nonsensical solutions. To
monitor the status of neighbouring sections, the partitioned polygon has an ’adja-
cency graph’ associated with it (Figure 16). Associating a node with each parti-
tioned section and linking it to an adjacent section create the adjacency graph.

Figure 16. Adjacency Graph

Once a floor plan has been decomposed into a series of rectangular partitions
and an adjacency graph constructed, each partition has a genome associated with
it. Conceptually, each individual contains a set of genomes: with each genome rep-
resenting a rectangular partition linked by the adjacency graph. With the building
partitioned and adjacent partitions monitoring each other, a genome can be gener-
ated for each partition. The initialisation process starts by selecting the left most
upper partition (this is an arbitrary selection as the initialisation process could the-
oretically start at any partition, however to improve the algorithm’s ’transparency’
it always starts at the same location). As the overall dimensions of this partition
are known (and that it is a rectangle) the algorithm uses the initialisation procedure
described above. Having initialised the first partition, the algorithm selects an ad-
jacent partition and generates a new genome for it. However as the next partition
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must share a common edge, the algorithm firstly copies the column spacings for
this edge. For example, in Figure 17, left hand side, the x and y spacings from
section 1 are copied into the adjacent partitions. New spacings are then generated
for the remaining directions (Figure 17 right hand side). In complicated buildings
it is possible that both directions have been initialised, in this instance the partition
simply copies spacings from adjacent sections and does not generate any new spac-
ings. By constantly maintaining and updating the status of neighbouring sections,

Figure 17. First and Final Stages of Partitioning

via the adjacency graph, the algorithm ensures continuity throughout the building.
This continuity is vital to prevent the building from becoming a series of blocks
that when placed together do not form a coherent solution. For example, in Figure
18 when considered in isolation each section is valid however, when considered
as a whole, the building’s layout is flawed because the columns do not align. The

Figure 18. Invalid Partitioning

third section of the genome is assumed to be fixed throughout the building there-
fore every genome has an identical section 3.
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3.21 Evolutionary operators

The same evolutionary operators described previously are applied to each rect-
angular partition. However, to ensure column continuity some additional steps are
applied:

Mutation: Having selected the individual to mutate, the mutation operator
randomly chooses, with uniform probability one partition of the building. It
then selects an individual gene and generates a new variable for it. If the mu-
tation operator selects a gene from sections 1 or 2, the gene is replaced with
a randomly generated value between 0 and the limits of the section (Figure
19). Unlike BGRID, that restricts the new spacing to a value between the
two adjacent genes, the new system simply generates a random spacing and,
if required, sorts the genome so that the column spacings increase from left
to right. Having altered its genome, the section is placed back into the build-
ing and all adjacent sections are updated (Figure 19). This final step means
the mutation operator is able to modify the building in only one location but
the change ripples throughout the building preventing column alignments
degenerating.

Figure 19. Mutation

Recombination(i.e. crossover): OBGRID employs a single point crossover
operator (Goldberg, 1989), which exchanges part of the genomes associated
with a section of the building. However once recombination has been ac-
complished, the altered sections are reinserted into the building and all other
adjacent partitions updated (as with the mutation operator described above)
(Figure 20).

3.22 Fitness Function

OBGrid applies the same fitness function as BGrid to each partition in the floor
plan and aggregates the results.
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Figure 20. Crossover

3.23 Illustrative Example: An Orthogonal Building

The following test case was designed to assess OBGrid’s performance. The
basic floor plan is given in Figure 21 and the partitioned floor plan is shown in
Figure 22. The parameters used are as for the rectangular building example.

Figure 21. Orthogonal Example: Floor Plan and Dimensions
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Figure 22. Partitioning for Orthogonal Example

3.24 Results

The performance graph (Figure 23) shows the fitness of the best of generation
during the run, while Figure 24 indicates the optimum layout. The best solution

Figure 23. Performance Graph
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was found in generation 97 and proposes using the long structural system with an
average column spacing of 20m and mechanical ventilation.

Figure 24. Best Solution: Generation 97

4 Genetic Algorithms for Design

In the above examples, although the form of the building was a factor, it was not the
main purpose of the search which was more aimed at finding a structural layout,
once the floor plan had been fixed. However in many examples of Engineering
design, finding the best form for a given set of criteria, is an important factor. This
process goes by the general name of topological reasoning and in the following
section the discussion will look at some of the more salient methods that are used
in conjunction with genetic algorithms. In particular, the discussion will focus on
the methods of representation (i.e. what should be in the chromosome) used with
topological reasoning for structural design.

4.1 Parameter Based Representation

In the above examples for building design, the chromosome contained the pa-
rameters which defined the column locations. Where the topology of what is to
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be design has already been fixed, the use of parameters is appropriate and useful
but for topological search, using parameters is very limiting and generally should
be avoided. The reason for this can be shown by the simple example given in
Figure 25. In a domain where the topology of the solution is unknown, then a

Figure 25. Parameter Based Representation

representation which allows the algorithm to describe a rectangle would, using pa-
rameters, require an X and Y dimension. However to also allow for a solution
where the answer is a circle would require a radius. One can of course go on
adding further possible shapes and for each one there would have to be a separate
parameter set and the algorithm would have to be able to recognise each one. It
becomes even worse if one considers a population of possible solutions with differ-
ent topologies and then considers how one would cope with typical operators such
as crossover. So for search problems where the topology is a part of the search,
the use of parameters is very restrictive and almost certainly will lead to a poor
solution. So other forms of representation are required.

4.2 Ground Structures

Another form of possible representation that has been used extensively in the
past is ground structures. With a ground structure, in theory, the complete range
of possible components and topologies is pre-defined and the idea of the search
is to determine which of the components can be removed to just leave ”the best”
structure. In practice, it is impossible to predict in advance all the possible com-
ponents and topologies and therefore, right from the very start, one can say that
ground structures will not allow a full search of all the possible solutions. Ground
structures are mostly used when a truss is the preferred form. A ground structure
then consists of a truss with nodes in fixed locations. Each node is initially con-
nected to all the other nodes by a structural member. The ”optimisation” process
consists of selectively removing structural members and searching for that com-
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bination which best satisfies the search criteria (Figure 26). The method has the
attraction of being simple but by fixing the number of nodes and their location, the
search is severely constrained and so the resulting structure is unlikely to be the
optimum for the given criteria.

Figure 26. An example of so called optimization using a ground structure. On the
left is the ground structure and on the right is the ”optimised” structure (Deb and
Gulati, 2001)

4.3 Graphs

Various forms of graph based representation have been used with genetic al-
gorithms. As with ground structures, their application has mostly been to trusses
although they can be used for other layout problems such as building floor plans.
Graphs allow one to model the connectivity between nodes while varying the lo-
cation of the nodes (Borkowski and Grabska, 1995). This gives them a distinct
advantage over the ground structure method and generally for problems which in-
volve linear and connected elements, a graph representation is very good. Yang
(2000) presents a simple method of using a tree based structure to describe trusses
(Figure 27 and Figure 28). In mathematical terms, this structure can be expressed
as:

I=((e1,m,i),(e2,m,k),e3,i,l),(e4,k,n2),e5,i,n1),e6,k,p),e7,i,n4),
(e8,p,j),(e9(l,n3),e10,p,n3),e11,j,n2),e12,j,n1))

Where the ”e” values are the ”edges” (i.e. the lines connecting the nodes in
the graph). In the above case, the edges are given zero values but they could eas-
ily contain properties such as the cross sectional area of the structural component,
etc. Such a structure as that given above can easily be turned into a genetic al-
gorithm chromosome. When applying operators such as crossover, there can be
problems with the resulting structures being unviable (for example mechanisms)
and so sometimes ”repair operators” are needed. Graphs are useful way of repre-
senting structures such as trusses which consist of many interconnecting members
but have only limited applicability to other forms of structures.
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Figure 27. An Example Truss Structure

Figure 28. Graph Based Representation of Truss Structure

4.4 Voxels

The use of voxels has already been discussed above and an example is given
in Figure 29. For problems where there is a relatively high amount of solid mate-
rial in comparison to the amount of voids, then voxels can be a useful technique.
However, some of the problems are shown in Figure 29. This is an extension of
the pure bending problem discussed previously, where in this case some allowance
is made for shear forces, resulting in the formation of a web. The initial popula-
tion consists of randomly created solutions and from these one hopes to generate
suitable structural forms. The shape on the left shows a solution from an early
stage of the process. It can be seen that there are a number of isolated sections of
material. As the load is applied at the top and supported at the base, there is no
way that these can form any part of the main structure. However, at a later stage
when being combined with another chromosome using crossover, these isolated
voxels may link up with other voxels and form part of a useful structure.
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Figure 29. Potential Problems and Eventual Success using Voxels

So there are two competing forces. The first is to get rid of the isolated voxels
because they serve no immediate purpose and the second is that they may form a
useful building block at a later stage. The solution is that there has to be a com-
promise and the fitness function has to contain some functions which assist with
the removal of isolated voxels (such as measuring the total length of the exposed
voxel edges) which however are not so punitive as to immediately remove them
all.

Another problem is for intermediate solutions, such as that shown on the left
and in the centre, if these are structural forms, how does one analyse the perfor-
mance of such cross sections so that one can ascertain their fitness. Griffiths and
Miles (2003), used approximate methods. More recent approaches by the author
have used finite elements but this leads to long execution times.

Crossover and Mutation with Voxels

With a voxel representation, there is no difference between the genome and the
phenome. So, unlike most genetic algorithm problems where crossover and muta-
tion operate on a parameter set which have no direct connection to the phenome,
with voxels the operators directly change the form of the solution. This makes
the choice of operator a matter of vital importance. As discussed in the preced-
ing chapter, the usual crossover mechanism uses a mask and the components are
swapped directly.

For the problem shown in Figure 29 above, the problem is essentially two di-
mensional and so mask based crossover in two dimensional form works as shown
below in Figure 30. However, experience has shown that using this form of
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Figure 30. Two dimensional crossover using a conventional mask (Zhang and
Miles, 2004)

.

crossover with voxels does not give a satisfactory solution. The problem can be
seen in Figure 30 where once the solutions start to converge, the material which is
swapped is almost identical and so the ability of the algorithm to search for new
solutions is severely constrained. Extensive experience based on the work of Grif-
fiths and Miles (2003) and Zhang and Miles (2004) has shown that what is needed
is a two-dimensional crossover with swap as shown below in Figure 31 where the
areas to be exchanged are chosen randomly. This may at first sight seem more dis-
ruptive than the normal crossover mechanism and therefore intuitively less likely
to give satisfactory answers but extensive testing has proved the superiority of the
swap operator.

Similarly with mutation, just changing one or two bits in a large search space
(e.g. 32 x 64 voxels = 2048 bits) has little impact. Griffiths and Miles found that
it was better to mutate on an area basis, say selecting a group of 4 voxels which
form a square and applying mutation to these.

4.5 Designing Geodesic Domes Using a Computational Geometry Based Rep-
resentation

Geodesic domes are structural space frames with regularly spaced members
which are typically arranged in a triangular format. The search for good so-
lutions to the design of such domes is an interesting problem because of their
3 dimensional nature. Pure geodesic domes have homogeneity in both member
length and nodal angular incidence and also have a geometry that is usually based
upon the sub division of a spherical surface into triangles, these being the sim-
plest non-deformable rigid shape. Geodesic domes are considered by some to be
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Figure 31. Two dimensional crossover with swap (Zhang and Miles, 2004)

the strongest, lightest and most efficient building system Motro (1994). In this
section, supporting the design of geodesic like domes by means of a genetic algo-
rithm is discussed. The domes that are designed not pure geodesics because the
constraints on member lengths and angles are not imposed although these could
be implemented by introducing extra constraints. The aim is just to produce viable
and efficient domical structures.

The representation used is based on a technique known as convex hulls which
are a subsection of computational geometry. Convex hulls are useful for this sort
of work because the dome can be represented as a collection of vertices which
are then joined by lines to form a series of triangles. From the point of view of
evolutionary computation, the method has a further attraction that the vertices can
be generated randomly and the algorithms associated with convex hull will then
determine which vertices lie on the exterior and thus form the convex hull itself.
Additionally, this ability to find the exterior vertices and ignore the others means
that should a vertex become displaced from the convex hull, possibly due to the
impact of operators such as crossover, it does not have to be deleted but can remain
within the population and may be of use in a succeeding generation.

In the following, the discussion concentrates on the implementation of the rep-
resentation. For further details about this work see Shaw et al. (2005a). The initial
sections contain the description of the computational geometry techniques which
have been used with the later sections describing how these are implemented in a
GA.

Convex Hulls

Computational Geometry is the study of algorithms and data structures for
solving geometric problems (Shamos, 1978). For the dome design problem, a
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sub-section of computational geometry called convex hulls is used. The convex
hull of a finite set of points S, is considered to be the convex polyhedron with
the smallest volume that encloses S. Convex hulls can be used to form polyhedra
with a polyhedron being defined as a three dimensional object composed of a finite
number of flat faces, edges and vertices (Figure 32). It can also be described as
the 3D generalisation of a 2D polygon. Within this work, every polyhedron will
be convex with triangular faces and referred to as convex polyhedra. Polyhedral

Figure 32. CCW

Figure 33. Tetrahedron with CCW

faces have one important feature, they maintain their vertices so that when seen
from the exterior they appear in counter clockwise (CCW) (Figure 33). This en-
sures that the right hand rule (Figure 34) always yields a vector normal to the face,
pointing away from the polyhedron (Rourke, 1998).

Signed Volumes

To calculate the volume of a tetrahedral from the vertices, one has to use the
determinant form of the cross product (Rourke, 1998). The volume is described
as ’signed’ because it can be positive or negative with a negative volume being
defined as being generated when a face f forms a tetrahedron with a point p that
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Figure 34. Right Hand Rule

Figure 35. Negative volume generated by CCW face f and point p

can see its vertices in a CCW manner (Figure 35). A face f is considered to be
visible from some point p, iff a line drawn from p to some point x interior to f
does not intersect with the polyhedron, denoted as CH, at any point other than x.
Visibility can be also be formally defined by using sets (17). It should be noted
that (17) defines a face that is ’edge on’ to p to be invisible.

i f f px CH x (17)

The visibility of a face f from a point p can be determined by calculating the signed
volume of the tetrahedron defined by f and p. f is considered to be visible from p,
iff the signed volume is negative.

Incremental Algorithm

There are several algorithms which can be used to construct a convex hull
(Rourke, 1998) (de Berg, 2000). In this work, the incremental algorithm is used.
This constructs the convex hull CH, of a finite set of points S, by initially devel-
oping the convex hull CHi 1 of a simple sub-set Si of S. Having constructed the
convex hull for Si, the algorithm then adds one point at a time from S to Si updating
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the convex hull as it progresses.
For example, consider a finite set of points

S p 1 p 2 p 3 p n (18)

The convex hull is initialised using a tetrahedron which is defined by four
points taken from S. The base of the tetrahedron is formed by 3 non-collinear
points and a fourth point at its apex, non-coplanar with the first three (if S does not
contain these points, then it is a 2D set and invalid for this problem).

The next remaining point pi in S, is then added to the existing convex hull
CHi 1 by considering the question: Are there any existing faces of CHi 1 visible
from pi?

No. If none of the existing faces of CHi 1 are visible from pi, then pi must
be internal to CHi 1. Therefore CHi 1 is still valid, as it encloses all points
in Si and remains unaltered. This is one of the strengths of this form of rep-
resentation because it effectively ignores vertices which are in an inappro-
priate position. This avoids the need for repair algorithms and other features
which are commonly implemented with topological search problems to deal
with the disruption that can be caused by crossover.

Yes. If some of the existing faces of CHi 1 are visible from pi, then pi

must be exterior to CHi 1. Therefore CHi 1 is invalid, because it no longer
encloses all points in Si and must be updated to include pi.

Updating the Convex Hull

The convex hull CHi 1 is updated in two stages: locating the horizon and in-
corporating the external point. An external point pi divides the existing hull CHi 1

into two regions: the visible and the invisible. These two regions are separated
by a curve called the ’horizon’ (de Berg, 2000) which is formed by the series of
edges that are adjacent to a visible and invisible face (Figure 36 a). Therefore once
the visibility status of every face from pi has been determined, the horizon can be
located. The external point is incorporated into the hull by appending a set of new
faces to it that have pi as a vertex. The new faces are triangular and constructed
from a horizon edge with an apex at pi (Figure 36 b). After building these new
faces, the original faces that were visible from pi are now underneath (the new
faces) and should be deleted along with any superfluous edges and vertices. At the
end of this process a new convex hull is complete (Figure 36 c).

Considering the definition of visibility that states that ’edge on’ faces are in-
visible, then any new faces will be appended to these existing ’edge on’ faces.
However, if ’edge on’ faces are considered to be visible then the algorithm will
attempt to remove them and replace them with a single new face. Unfortunately



www.manaraa.com

50 J. Miles

Figure 36. Updating an existing hull (adapted from Rourke (1998)).

if the new point to be inserted (into the convex hull) is coplanar with the existing
’edge on’ faces, the new face may not be triangular or result in the existing face
fracturing into a series of smaller faces and thus make the algorithm significantly
more computationally intensive (de Berg, 2000).

4.6 An Example

This work uses a GA to search for potential solutions. Real number coding is
used. The genome used in this work is subdivided into three sections (Figure 36):

Location of and magnitude of loads: The loads represent forces that must be
supported by the structure in addition to its self weight and are included in
the genome because it is assumed that a load can only act at a node (nodes
are solely constructed from the information within the genome). Therefore
although the user defined loads are constant for all individuals, they are in-
cluded in the genome to add transparency (the self weight is calculated once
the dome has been constructed and is not included in the genome).

Location of the dome supports: Dome supports represent locations at which
the dome is attached to the ground or supporting structure, for most domes
these are vertices in the plane z = 0. These can user specified or searched for
during the evolutionary process.

Location of dome vertices: Dome vertices represent nodes in the dome. For
non-trivial structures, this is the largest section of the genome. These are
initially generated by the incremental algorithm.
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Figure 37. Example genome

Representation

Each section of the genome is represented in a different way :

User defined loads: As the user defined loads are constant, the evolutionary
operators do not need to modify them.

Dome supports: A pair genes (i.e. X and Y coordinates) represents every
dome support: (It is assumed they are all in the plane z=0).

Potential vertices: A triplet represents each node location (i.e. a separate
gene for the x,y and z coordinates).

When the incremental algorithm constructs the convex hull, the final structure
is dependent on the order in which the vertices are added. So two convex hulls
constructed from the same set of points but with different orderings, could pro-
duce structures that have identical vertices but different arrangements of faces and
edges and thus different structural responses. Therefore, genome ordering can be
significant.

Initialisation

At the start of the search process, the user only has to input the location of the
loads and define the size of the circular base. The user can also, if required, spec-
ify the number and location of the dome supports. If this isn’t done, the algorithm
will search for appropriate support positions during the run. Where not specified,
support locations are initially a series of randomly generated points on the circum-
ference of the circular base generated by selecting two numbers x1 and x2 from a
uniform distribution between -1 and 1 (ensuring that the sum of the square of both
numbers is not greater than or equal to 1). The corresponding Cartesian coordi-
nates related to x1 and x2 are given by equations (19) and (20) (Weisstein, accessed
2005).
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1 x2
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1 x2
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Vertices are generated from random points within a cube that is centered on the
dome’s base and with a side length of three times the diameter of the base. This
procedure is used to prevent the GA searching in completely unproductive regions,
while at the same time not biasing or inhibiting the search. To prevent additional
supports being generated, vertices may not lie on the domain boundaries. At the
outset each individual has a random number of vertices in its genome. However
because the dome is only constructed from vertices that lie on the convex hull, it
does not necessarily follow that all of these will be used to construct the dome.

4.7 Evolutionary Operators

Within the GA’s search process, the loads section of the genome is unaffected
(as these loads must be carried by every solution) while the crossover and mu-
tation operations are applied to the remaining sections individually. Selection is
achieved using a standard tournament approach. An ’n point’ crossover operator is
employed which is allowed to alter the length of the genome. However, crossover
must ensure that the second section always contains gene pairs and the third sec-
tion contains gene triplets. Two mutation operators are used in this system: point
and shuffle. Point mutation randomly selects a gene to alter and then uses the same
procedures as described during initialisation to generate a new point depending on
whether a support or vertex is selected. Shuffle mutation reorders a length of the
genome. This operator is included because genome ordering is important thus a
solution maybe improved by shuffling the genes.

4.8 Fitness Function

This work uses the minimisation of structural weight, enclosed volume and sur-
face area as its major objectives. These are combined with a structural parameter
that seeks to ensure constraints such as allowable buckling, tensile and compres-
sive stresses are not violated in the structure. The structural analysis module uses
the Trussworks package (Bucciarelli and Sthapit, accessed 2003) that allows users
and analyse 3D structures using the Direct Stiffness Method. This is computation-
ally much faster than the more rigorous analysis methods such as finite element
analysis and more than adequate for what is basically a conceptual design tool. To
search for the optimum number and location of supports, the GA initially gener-
ates a random number of supports and uses overall weight and stress constraints
to guide it. This is because for every additional support there must be at least two
additional structural members. These increase the overall weight: while the re-
moval of a support increases the loads carried by each of the remaining structural
members which may violate a structural constraint. Both of these scenarios reduce
the individual’s fitness and hence the algorithm is guided towards good solutions.

When calculating an individual’s fitness, the 3D vertices in the genome must be
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converted into a domical structure (the phenotype). This process is accomplished
by constructing the genome’s convex hull, via the incremental algorithm. Once the
convex hull is constructed, its edges become the structural members of the dome.
Having built the dome, structural analysis is used to determine whether it performs
within the constraints specified above, if not the individual is penalized using a
quadratic penalty function (Richardson et al., 1989). A penalty function reduces an
individual’s fitness by an amount proportional to the constraint violation. It must
also consider invalid structures that cannot sustain the user defined loads (because,
due to the way the phenotype is constructed, there is no guarantee that they will
be included in the final dome as they may not form part of the convex hull). If
this situation occurs the individual is heavily penalised because the whole purpose
of the structure is to support the user defined loads. Finally the dome’s surface
area and volume ratio is determined along with its overall weight. At the end of
this process an individual’s genotype is converted into its phenotype allowing its
fitness to be calculated via equation (21).

Fitness weight
Sur f aceArea

Volume
StructuralOb jective (21)

A sensitivity analysis showed that the weightings of the components within eqn.5
are not significant within a reasonable range around the chosen values. It is recog-
nized that the fitness function could be more sophisticated but the main thrust of
this work is to establish the representation. The parameters used for the Genetic
Algorithm are:

Population size = 500, generations = 25, probability of reproduction 0.1, Prob-
ability of mutation (per genome)= 0.4, N point crossover, probability of crossover
0.5, Tournament selection (size =3) with Elitism.

Point, shuffle, addition and deletion mutation operators were all used with the
choice being random. The fitness function is based on the minimisation of the en-
closed volume and surface area subject to constraints relating to member buckling.

Currently this work assumes all structural members have the same cross sec-
tional area. The genome used does not consider individual members, as an explicit
parameter therefore there is no easy way of storing individual cross-sectional ar-
eas for exchange during the evolutionary process. Geodesic domes aim to have
homogeneity with regard to member sizes, so this is not such a major issue. An
example of the type of structure produced is given in Figure 38. As can be seen
this is not a pure geodesic dome because the member lengths and the angles vary
but as was stated at the start of the paper, our aim was only to produce viable and
efficient domical structures.
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Figure 38. Example of a Dome Designed by the System

4.9 Current Research Work

As can be seen from the above, there is a problem with topological reasoning,
in so far as there is no one technique that can be universally applied to all classes
of problems. Instead, there are a number of discrete techniques, each of which
can only be applied to a small range of topological search challenges. There are
also other topological reasoning/representation techniques which have not been
discussed above and likewise, these also are only applicable to certain classes of
problem.

This lack of a general technique poses problems for designers who wish to look
for good solutions for more complex problems. If the form of the ”best” solution is
unknown, then it is impossible at the start to choose a suitable representation. Also
if the form of the solution may involve several possible forms then the challenge
becomes even more complex. Take for example the task of designing a bridge.
Bridges can take several forms but to put it as simply as possible, the solution can
be a beam (which in turn can be a truss, a box girder or simple beam and slab
construction), a compression structure such as an arch or a tension structure such
as a suspension or cable stayed bridge. Getting the topology of such a structure
right is a major challenge and the savings and benefits can be substantial. However,
there is no computationally based form of topological reasoning that could even
begin to handle all these different structural forms.

There is also the question of complexity. With the current forms of representa-
tion that are used, it is only possible to represent relatively simple structural forms
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within a genetic algorithm. With more complex shapes, the chromosomes become
so huge and unwieldy that they present handling difficulties within the algorithm.

At present there is no clear solution to these problems but work in recent years
has been looked at what are known as generative representations and also gener-
ative geometries. Space and time precludes a discussion of these techniques here
but they are active research areas which seem to offer a solution to some of the
challenges described above and with further research may become the solution
to all of them. For the reader who wishes to know more a good starting point for
generative representations is Hornby (2003) and for generative geometries, Leyton
(2001). Progress to date in implementing these approaches is described in Miles
et al. (2007).
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Abstract. This chapter is devoted to applications of biologically inspired 
methods as evolutionary algorithms and artificial immune systems to 
optimization and inverse problems, related to size, shape, topology and 
material optimization and defect identification of structures.  

 
 

1 Introduction 
 
Evolutionary algorithms (Arabas, 2001), (Michalewicz, 1996) are methods 
which search the space of solutions basing on the analogy to the biological 
evolution of species. Like in biology, the term of an individual is used, and it 
represents a single solution. Evolutionary algorithms operate on populations of 
individuals which can be considered as a set of problem solutions. An individual 
consists of chromosomes. Usually it is assumed that the individual has one 
chromosome. Chromosomes consist of genes which play the role of design 
variables in optimization problems. The adaptation of the individual is computed 
using a fitness function. All genes of the chromosome decide about the fitness 
function value. A flowchart of the evolutionary algorithm is presented in 
Figure 1.  

In the first step a initial population of individuals is created. Usually, the 
values of the genes of particular individuals are randomly generated. In the next 
step the individuals’ fitness function value is computed. Then, evolutionary 
operators change genes of the parent population individuals, individuals are 

                                                 
* This work is a result of cooperation with  W.Beluch, A.D�ugosz, W.Ku�, P.Orantek, A.Poteralski 
and M.Szczepanik 
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selected for the offspring population, which becomes a parent population and the 
algorithm works iteratively till the end of the computation. The termination 
condition of computations can be formulated in different ways, e.g. as the 
maximum number of iterations.  

In evolutionary algorithms the floating-point representation is applied, 
which means that genes included in chromosomes are real numbers. Usually, the 
variation of the gene value is limited. 

 

 
 

Figure 1. A flowchart of an evolutionary algorithm 
 

A single-chromosome individual (called a chromosome) chi, i=1,2,…,N, 
where N is the population size, may be presented by means of a column or a row 
matrix, whose elements are represented by genes gij, j=1,2,…,n, n-the number of 
genes in a chromosome. The sample chromosome is presented in Figure 2. 

 

 
 

Figure 2. The structure of an individual 
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Evolutionary operators change gene value like the biological mechanisms of 
a mutation and a crossing. Different kinds of operators are presented in 
publications, and the basic ones are: 

- an uniform mutation, 
- a Gaussian mutation, 
- a boundary mutation, 
- a simple crossover, 
- an arithmetical crossover. 
The uniform mutation changes values of randomly chosen genes in a 

randomly selected individual. The new values of the genes are drawn in such a 
way that they could fulfil constrains imposed on the variation of the gene values. 
The diagram of how an operator works is presented in Figure 3. 

 

 
 

Figure 3. A diagram of an uniform mutation 
 

The Gaussian mutation is an operator changing the values of an individual’s 
genes randomly, similarly to the uniform mutation. New values of the genes are 
created by means of random numbers with the Gaussian distribution. The 
operator searches the individual’s surrounding.  

The boundary mutation (Figure 4) operates similarly to the uniform 
mutation, however, new values of the genes are equal to the left or right values 
from the gene variation range (left or right constraint imposed on gene values). 

 
 

 
 

Figure 4. A diagram of boundary mutation 
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The simple crossover is an operator creating an offspring on the basis of two 

parent individuals. A cutting position is drawn (Figure 5), and a new individual 
consists of the genes coming partly form the first and partly form the second 
individual. 

 

 
 

Figure 5. A diagram of a simple crossover 
 
The  arithmetical crossover has no biological counterpart. A new individual 

is formed similarly to a simple crossover, on the basis of two parent individuals, 
however, the values of the individual’s genes are defined as the average value of 
the parent individuals’ genes (Figure 6). 

 
 

 
 

Figure 6. A diagram of an arithmetical crossover 
 

Very important element of the evolutionary algorithm is the mechanism of 
selection. The probability of the individual’s survival depends on the value of the 
fitness function. A ranking selection is performed in a few steps.  First, the 
individuals are classified according to the value of the fitness function, then a 
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rank value is attributed to each individual. It depends on the individual’s number 
and the rank function. The best individuals obtain the highest rank value, the 
worst obtain the lowest one. In the final step individuals for the offspring 
generation are drawn, but the probability of drawing particular individuals is 
closely related to their rank value. 

 
2 Parallel and distributed evolutionary algorithms 

 
2.1 Introduction 

 
The sequential evolutionary algorithms are well known tools for global 
optimization (Arabas, 2001), (Michalewicz, 1996). The number of fitness 
function evaluations during optimization is equal to thousands or even hundred 
of thousands. The fitness function evaluation for the real engineering problems 
takes a lot of time (from seconds to hours). The long time computations can be 
shorten when the parallel or distributed evolutionary is used. The fitness function 
evaluation is done in parallel way when the parallel evolutionary algorithms are 
used. The distributed evolutionary algorithms operate on many subpopulations. 
The parallelization of the distributed evolutionary algorithm leads to two cases: 
first when each subpopulation uses different processor, second when the 
different processors can be used by each chromosome of the subpopulations. 

 
2.2 The parallel evolutionary algorithm 
 
The parallel evolutionary algorithms (Cantu, 1998) perform an evolutionary 
process in the same manner as the sequential evolutionary algorithm. The 
difference is in a fitness function evaluation. The parallel evolutionary algorithm 
evaluates fitness function values in the parallel way. Theoretically, maximum 
reduction of time needed to solve the optimization problem using parallel 
evolutionary algorithms is equal to number of used processing units. The 
maximum number of processing units which can be used is constrained by a 
number of chromosomes in the population. The flowchart of the parallel 
evolutionary algorithm is shown in Figure 7. The starting population of 
chromosomes is created randomly. The evolutionary operators change 
chromosomes and the fitness function value for each chromosome is computed. 
The server/master transfers chromosomes to clients/workers. The workers 
compute the fitness function and send it to server. The workers operate on 
different processing units. The selection is performed after computing the fitness 
function value for each chromosome. The selection decides which chromosomes 
will be in the new population. The selection is done randomly, but the fitter 
chromosomes have the bigger probability to be in the new population. The next 
iteration is performed if the stop condition is not fulfilled.  
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Figure 7. Parallel evolutionary algorithm 
 

2.3 The distributed evolutionary algorithm 
 

The distributed genetic algorithms (Aleander, 2000), (Tanese, 1989) and the 
distributed evolutionary algorithms (DEA) work similarly to many evolutionary 
algorithms operating on subpopulations. The evolutionary algorithms exchange 
chromosomes during a migration phase between subpopulations. The flowchart 
of DEA is presented in Figure 8. 

When DEA is used the number of fitness function evaluations can be lower 
in comparison with sequential and parallel evolutionary algorithms. DEA works 
usually in the parallel manner. Each of the evolutionary algorithms in DEA work 
on a different processing unit. The theoretical reduction of time could be bigger 
then the number of processing units. The starting subpopulation of chromosomes 
is created randomly. The evolutionary operators change chromosomes and the 
fitness function value for each chromosome is computed. 

The migration exchanges a part of chromosomes between subpopulations. 
The selection decides which chromosomes will be in the new population. The 
selection is done randomly, but the fitter chromosomes have bigger probability 
to be in the new population. The selection is performed on chromosomes 
changed by operators and immigrants. The next iteration is performed if the stop 
condition is not fulfilled. 
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Figure 8. The distributed evolutionary algorithm (one subpopulation) 
 

2.4 The improved distributed evolutionary algorithm 
 

To improve scalability of the distributed evolutionary algorithm, mechanisms 
from the parallel evolutionary algorithm can be used. The simplest improvement 
is computing fitness function values in a parallel way. The maximum number of 
processing units which can be used is equal to a sum of chromosomes in 
subpopulations instead of the number of subpopulations. The flowchart of the 
modified distributed evolutionary algorithm is presented in Figure 9. 

 
3 Geometry Modeling 

 
The choice of the geometry modeling method and selection of design variables 
have an important influence on the final solution of the optimization problem. 
There is a lot of methods for geometry modeling. In the proposed approach the 
Bezier curves are used to model geometry of structures. This type of the curve is 
a superset of the more commonly known NURBS  - Non-Uniform Rational B-
Spline (Piegl and Tiller, 1997). Using these curves in optimization allows to 
reduce a number of design parameters. Manipulating by means of control points  
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Figure 9. Improved distributed evolutionary algorithm 
 
provides the flexibility to design a large variety of shapes. The main advantages 
of NURBS curves are: 

- one mathematical form for standard analytical shapes as well as for free 
form shapes, 

- flexibility to design a large variety of shapes, 
- fast evaluation by numerically stable and accurate algorithms, 
- invariance under transformations. 
 

3.1   Bezier curves 
 

An nth-degree Bezier curve is defined by: 
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where t is a coordinate with changes range <0,1>, Pi are control points. 
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The 4-th degree Bezier curve is described by following equation: 
 

� � � � � � � � � �4 3 22 3 4
0 1 2 3 41 4 1 6 1 4 1� � � � � � � � �C u u P u u P u u P u u P u P  (3)  

 
Example of the cubic Bezier curves is shown in Figure 10a. By changing 
positions of control points, one can obtain a large variety of shapes. 

 
 
a)  b) 

     
 

Figure 10. Example modeling:  
a) 4th-degree Bezier curve, b) closed NURBS curve 

 
3.2 NURBS curves 

 
A NURBS curve is defined as: 
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where:  Pj – control points, wj – weight of control points, 
Nj,n – nth-degree B-spline basis functions defined on the knot vector: 
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Changing position of control points and weight of control points, it is 
possible to manipulate the curve precisely. A very important – from the practical 
point of view – feature of NURBS curves is local approximation property. It 
means that if the control point Pj is moved and/or the weight wj is changed, that 
only a part of the curve on the interval t� [ti, ti+p+1] is modified. An example of a 
NURBS curve is presented in Figure 10b. 

In the case of 3-D structures the boundaries as the NURBS surfaces 
(Figure 11) are modeled. Due to using the NURBS curves and surfaces, the 
number of optimized parameters can be decreased. 

 
 

 
Figure 11. The modeling the boundary using the NURBS surface 

 
 
Shapes of voids in 2-D structure are modelled as the: (i) – circular, (ii) – 

elliptical or (iii) – arbitrary, using the closed NURBS curve (Figure 12). In the 
case of 3-D structure shapes of voids are modeled as: (i) – spherical, (ii) – 
ellipsoidal or (iii) – arbitrary using the closed NURBS surface (Figure 13). 
Coordinates of control points Pj and parameters of typical geometrical figures 
play the role of genes in chromosomes. 

 
 

 
 

Figure 12. The modeled forms of the voids (2-D) 
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Figure 13. The modeled forms of the voids (3-D) 

 
 

4 The evolutionary computations in optimization of 
structures under dynamical loading 
 

4.1 Introduction 
 

The application of classic optimization algorithms in dynamical structures is 
restricted by limitations referring to the continuity of the objective function, the 
gradient or hessian of the objective function and the substantial probability of 
getting a local optimum. Therefore new optimization methods, free from 
limitations mentioned above, have been still looked for. Those methods are 
known as genetic algorithms, evolutionary programming, evolutionary strategies 
etc. Many of them turn out to be the alternative methods of optimization for 
classic methods such as e.g. well known gradient methods. Particularly, the 
genetic algorithms are often used in solving optimization problems. Those 
algorithms are widely applied in many fields for solving search and optimization 
problem. 

This chapter concerns in the application of evolutionary algorithms in the 
shape and topology optimization of structures being under dynamical loading. 
 
4.2 Formulation of the optimization problem 

 
Consider an elastic body which occupies the domain � bounded by boundary � 
(Figure 14). Governing equations describing an elastodynamic problem have the 
following form: 

 
, ,( , ) ( ) ( , ) ( , ) ( , ), , [0, ]i jj j ji i i fu t u t b t u t t t� � � �� � � � �� �x x x x x��  (6) 
 
where ( , )iu tx  is a field of displacements, ( , )ib tx is a field of body forces, 

�  and � are Lame constants and � is a mass density. 
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Boundary conditions are prescribed in the following form: 

( , ) ( , ), , [0, ]

( , ) ( , ) ( ) ( , ), , [0, ]

o
i i u f

o
i ij j i p f

u t u t t t

p t t n p t t t

x x x

x x x x x
  (7) 

where ip is the field of tractions, jn denotes the component of the outward 
normal n and u p .
Initial conditions describe the field of displacements and velocities in the time 
t=0: 

( ,0) ( ), ( ,0) ( ),i i i iu d u vx x x x x   (8) 

Figure 14. The elastic body 

The problem of the shape and topology optimization of elastic structures 
being under dynamical loads can be formulated as the minimization of the 
volume of the structure 

min J d  (9)  

subjected to the constraints imposed on equivalent stresses and displacements 

( , ) 0

( , ) 0
eq o

o

t

u t u

x

x
 (10)  

where: i iu u u  x  or x , t T=[0,tf], o and uo are admissible equivalent 
stresses and displacement, respectively.  
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There is also the alternatively formulation of shape and topology 
optimization in which one minimizes a functional 

( , , ) ( , )
T T

J u d dt u p d dt  (11)  

with the constraints imposed on the volume of the structure 

0J d Vo  (12)  

Integrands  and  are the arbitrary functions of their arguments. Using the 
evolutionary algorithms, the minimization of (9) and (11) is performed with 
respect to shape design variables. In order to evaluate the functional (11) and 
constraints (10) the boundary element method was applied (Burczy ski, 1995). 

4.3  Example of evolutionary shape optimization under dynamical loads 

The example concerns minimization of the volume of a support (Figure 15). The 
support is loaded by dynamical loading F(t)=F0sin( t), where F0=10kN (Figure 
16). The optimization fitness function (9) was used. The constraints on the 
values of the displacements were imposed.  

The surface of the support was modeled using the NURBS surface. The 
coordinates of the marked points (Figure 17) (control points of the NURBS 
surface) were modified.  

The following parameters of the evolutionary algorithms were applied: 
pop_size: 50, max_life: 400. The optimal structure was shown in Figure 18. 

Figure 15. The support 
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Figure 16. The forced function 

 

 
Figure 17. The location of the control points of the NURBS surface 

 
 

 

 
Figure 18. The support after optimization 
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5 Evolutionary Optimization and Identification in 
Thermomechanical Problems 

5.1 Introduction 

5.2 Governing equations and objective functions 

iikT x x

i jj j ji iu u bx x x x

i ib T
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5.3 Numerical examples 
 

The 2-D structures modelled in plain strain state are considered in identification 
and shape optimization problems. Table 1 contains material parameters applied 
for every numerical test. 

 

Table 1. Material parameters 

Shear modulus 80GPa 
Poisson ratio 0.23 
Coefficient of thermal exp. 12.5 · 10-6 1/ºC 

 
 
Example 1. The identification of a circular void in the rectangular plate shown in 
Figure 19 is considered. The fitness function given by (19) is applied. 
Displacements are measured in the sensor points 1 and 2 whereas temperature is 
measured in the sensor points 3 and 4. The boundary was divided into 48 
elements. 

 
Figure 19. A rectangular plate with circular void 

 
The position and radius of the inner boundary were searched. Table 2 

contains parameters of the boundary conditions. 
 

Table 2.  Parameters of the boundary conditions 

T0
1 20�C 

T0
2 500�C 

q0 0 
p0 100kN/m 
�1 20W/m2K 
�2 1000W/m2K 
u0 0 
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The speedup s of computation can be expressed as time need to solve 
problem on 1 processing unit t1 computer divided by time on n-processing units 
tn: 

 
1

n

ts
t

�  (20)  

 
The number of processing units vary from 1 to 3. The two computers with 

two SMP processing units are used. Table 3 contains parameters of distributed 
evolutionary algorithm. 

 
Table 3.  Parameters of distributed evolutionary algorithm 

Number of subpopulations 2 
Number of chromosomes 10 

Number of genes. 3 
Constrain on gene 1 (x1 coordinate) 0,5 � 29,5 
Constrain on gene 2 (x2 coordinate) 0,5 � 9,5 

Constrain on gene 3 (radius) 0,5 � 3,0 
 
The speedup of the improved distributed evolutionary algorithm is shown in 

Figure 20. The linear speedup is theoretical maximal speedup of the parallel 
evolutionary algorithm. 

 

 
Figure 20. The speedup of improved distributed evolutionary algorithm 

 
 
Table 4 contains the best result (after 8897 iterations) and relative errors for 

coordinates and radius of internal void. 
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Table 4.  Results of the tests 
x1 coordinate 25.28978 
x2 coordinate 2.989090 

radius 0.997610 
value of the fitness function 0.000030 

x1 coordinate error 1,16% 
x2 coordinate error 0,36% 

radius error 0,24% 
 
 

Example 2. The structure with three inner boundaries, shown in the Figure 21, is 
considered. 

Figure 21. Structure with circular voids 
 

In the identification problem the positions, radii and number of the voids 
(form 1 to 5) were searched. The fitness function given by (19) was applied. 
Figure 22 shows thermomechanical loading for the structure and Table 5 
contains values of the boundary conditions. 

 
Table 5.  Parameters of the boundary conditions 

T0
1 100�C 

T0
2 20�C 

T0
3 0�C 

p0 100kN/m 
�1 1000W/m2K 
�2 20W/m2K 
u0 0 
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Figure 22. Boundary conditions 
 
The external boundary was divided into 39 elements, whereas each internal 

boundary into 8. The boundary sensor points of displacement and temperatures 
are located at every node of external boundary except the part where u0 is 
prescribed. 

The chromosome contains 15 genes (3 for each void). The void was 
generated for the value of radius greater than 0.5. Table 6 contains parameters of 
distributed evolutionary algorithm. Figure 23 and Table 7 show results of 
identification. 

 
Table 6.  Parameters of distributed evolutionary algorithm 

Number of subpopulations 2 
Number of chromosomes 10 

Constrain on x1 coordinate  0,5 � 19,5 
Constrain on  x2 coordinate -8,2 � 8,2 

Constrain on radius 0 � 2 
 

 
 

Figure 23. Results of identification 
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Table 7.  Results of the identification 
x1 coordinate 9.78084 2.19% 
x2 coordinate 2.97841 0.72% Void 1 

radius 0.92832 7.17% 
x1 coordinate 10.3143 3.14% 
x2 coordinate -3.24751 8.25% Void 2 

radius 0.77259 22.74% 
x1 coordinate 14.8896 0.74% 
x2 coordinate 4.86734 2.65% Void 3 

radius 0.93014 16.27% 
 
 

Example 3. A square plate with a circular void is considered (Figure 24). 
 

 
 

Figure 24. Square plate with circular void 
 

For the sake of the symmetry only a quarter of the structure is taken into 
consideration. The considered quarter of the structure contains an internal 
boundary shown in the Figure 25. Prescribed values of the boundary conditions 
are presented in Table 8. 

 
Table 8.  Parameters of the boundary conditions 

T0
1 300�C 

T0
2 20�C 

q0 0 
p0 100kN/m 
�1 1000W/m2K 
�2 20W/m2K 
u0 0 
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Figure 25. Boundary conditions 
 
The model consists of 90 boundary elements. The objective of shape 

function is minimization of the radial displacements given by the functional (18) 
on the boundary where tractions p0 are prescribed. The optimization problem 
consists in searching an optimal: 

� shape of the internal boundary; 
� width of the gap; 
� distribution of the temperature T0

* on the internal boundary. 
Shape of the internal boundary was modeled using Bezier curve which 

consists of 7 control points, whereas width of the gap and temperature T0
* using 

Bezier curve consist of 6 control points (Figure 26). 
 

 
 

Figure 26. Modelling the shape, width of the gap and distribution  
of the temperature on the boundary 
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For the sake of the symmetry along line AB (Figure 25) the total number of 
design parameters was equal to 13. The range of the variability of each control 
point for the width of the gap is between 0.2 and 0.8, whereas for the 
temperature is between 5�C and 80�C. 

Table 9 and Figure 27 contain final results of evolutionary optimization. 
 

Table 9. Results of the optimization 
x1 coordinate of control point 1 1.1124 
x2 coordinate of control point 1 13.3259 
x1 coordinate of control point 2 2.4609 
x2 coordinate of control point 2 7.0000 
x1 coordinate of control point 3 1.6232 
x2 coordinate of control point 3 5.0000 

Shape of the internal 
boundary 

x1 = x2  coordinate of control point 4 -4.0853 
control point 1 0.4313 
control point 2 0.2752 Width of the gap 
control point 3q 0.8000 
control point 1 48.9698 
control point 2 41.8679 

Distribution of the 
temperature on the 
internal boundary control point 3 5.0000 
 
 

 
 

Figure 27. The optimal shape, width and distribution of the temperature on 
the gap 
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6 Distributed Evolutionary Algorithm in Optimization of 
Nonlinear Structures 

6.1 Introduction 

et al
et al

et al

6.2 Formulation of the evolutionary optimization

Structures made from nonlinear material with hardening 
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eq eq
a

eq

 (21)  

 
where eq�  means the Huber – von Mises equivalent stress, p�  is the yield stress 
and 0�  is the reference stress. 

Shape optimization of structures with geometrical nonlinearities is 
performed by minimizing structure displacements. The fitness function can be 
formulated in the form: 

 
2

0

u

�

� �
� �� �

� �
 F d

u
 (22)  

 
where u is the displacement, u0 is the reference displacement. 

Constrains in the form of admissible volume of the structure and boundary 
values of design variables are imposed. Shape of the optimized structure can be 
defined using NURBS (Non-Uniform Rational B-Spline) (Piegl and Tiller, 
1997). There is a need of conversion curves into line segments and than the 
structure is meshed using triangle finite elements (FEM) or using boundary 
elements and cells (BEM). The Triangle (Shewchuk, 1996) code was used for 
the body meshing. Coordinates of control points of the NURBS curve play the 
role of genes in the chromosome. 

 
Forging process optimization 

 
The forging process in highly nonlinear. Three different fitness functions were 
used during optimization. The first one is a measure between axisymmetrical 
shape of the forged detail and the wanted one. 

 
( ) d� # 

y

F r y y  (23)  

The meaning of the ( )r y#  is show in Figure 28. The optimal fitness 
function value is known and is equal to zero. 

The MSC.Marc was used to solve the forging problem. The axisymmetrical 
bodies were considered. The forging process was modeled with the use of two 
bodies – rigid for a anvil and elastoplastic for a preform. The contact with 
Columb friction were used. The isothermal conditions were considered. The 
perform material was modeled as a  viscoplastic material using equation: 

 
� �0� $ $ $� � � �

m nA B  (24)  
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where - is a stress, - strain, - strain velocity, 0 - preliminary strain, A, B,
n, m - are material coefficients. 

Figure 28. The obtained and wanted shape of the forged detail 

The second and third fitness functions depend on plastic strains values. The 
idea of using these functions is to equalize plastic strains distribution in the 
body. The fitness function can be expressed as a double integral over the time 
and over the area of the structure with the difference between plastic strains p

and mean plastic strains av  as an integrand: 

 d dt
T

p av
o

F  (25)  

The third fitness function is a double integral over the time and over the area 
of the structure with plastic strains as an integrand: 

0

 d dt
T

pF  (26)  

6.3 Numerical examples 

A material with the material characteristic presented in Figure 29 is used in test 
problems (Examples 4 - 6).

Example 4. A 2-D structural element is considered (Figure 30a). The material 
data and parameters of the distributed evolutionary algorithm parameters are: 
E1=20 GPa, E2=0.5 GPa, p=250 MPa, =0.3, thickness 5 mm, load value 110 
N/mm, maximum body area 8000 mm2, number of chromosomes 500, number 
of generations 250, number of populations 4. 
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�

$

�max

�p

$p

E1

E2

 
 

Figure 29. Uniaxial stress-strain curve for material used in tests 
E1 and E2 are Young’s moduli, $p is yield strain and �p is yield stress. 

 
 
 
 
 
 
 
 a)  b)  c) 

          
 

Figure 30. Optimized plate: a) geometry,  
b) best after 1st generation, c) best after 196th generation 

 
The external boundary and the hole boundary undergo shape optimization. 

The external boundary was modeled using the NURBS curve with 3 control 
points (one of them can be moved – 2 design variables) and the internal hole was 
modeled using 4 control points NURBS curve (each can be moved – 8 design 
variables). The fitness function was computed using FEM. The shape of the 
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boundary after first and 196 generation is shown in Figure 30b,c. The plastic 
areas are marked using the gray color. 

In order to examine the DEA for various number of computers the 
computing time was measured for 15000 fitness function evaluations. Computers 
had AMD Duron 750 processors. The computing time versus the number of 
computers is given in Table 10. The number of computed fitness functions as 
function of the number of computers is shown in Figure 31. The starting 
population was the same for each test. Problem was simpler that one shown 
above – finite element mesh had lower number of elements. 

 
Table 10. The computing time in function of computers number 

number of computers computing time [s]
1 745 
2 374 
3 258 
4 195 
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Figure 31. Speedup of computations 
 

Example 5. The problem of shape optimization of a half K-structure is 
considered (Figure 32a). The material data and parameters of the DEA are: 
E1=20 GPa, E2=0.5 GPa, �p=150 MPa, %=0.3, thickness 5 mm, load value 50 
N/mm, maximum body area 30000 mm2, number of chromosomes 200, number 
of generations 500, number of populations 4. The traction-free boundary is 
modeled by 2 NURBS curves with 3 control points each. The fitness function 
was evaluated by the BEM. The shape of the structure after first and 476 
generation is shown in Figure 32b,c. The grey color was used to mark the plastic 
areas.  Computing time – 72 minutes. 
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 a)  b)  c) 

           
 

Figure 32. Half of K-structure: a) geometry, b) best after 1st generation,  
c) best after 476th generation 

 
Example 6. A shell structure containing 10 holes with constant radii is 
considered. (Figure 33a). The optimization problem is to find optimal positions 
of holes for criterion of minimum an integral over shells displacements. The 
structure was computed considering large displacements The fitness function 
was evaluated using MSC.Nastran. The shape of the shell after first and 500th 
generation is shown in Figure 33b,c. 
 
 

a)  b)  c) 

      
 

Figure 33. Shell: a) geometry, b) best after 1st generation,  
c) best after 500th generation 

 
Example 7. The shape optimization problem of a perform was considered. The 
open die forging is simulated. The flat anvil was used. The goal of the 
optimization is to find shape of the perform which leads to cylindrical shape 
after forging. The geometrical parameters are shown in the Figure 34. The 
material parameters in the constitutive equation (24) for aluminum in 350 � C 
were used: A=26.478, B=24.943, m=0.1629, n=3.4898. The friction coefficient 
was equal to 0.5. The time step was 0.002s, the number of steps 200, Speer of 
the anvil 75mm/s. The fitness function (23) was used during the optimization 
process. 
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Figure 34. The desired shape of the preform after forging 
 
The geometry of the preform (Figure 35) was modeled using NURBS curve 

with 4 control points. Coordinates of the control points were defined using 6 
genes values (g1-g6). 

 
Figure 35. The geometry of the preform 

 
The constraints imposed on the genes values are shown in Table 11. 
 

Table 11. The constraints on the genes values 

gen minimum 
[mm] 

maksimum 
[mm] 

g1 50 250
g2 50 250
g3 50 300
g4 10 100
g5 50 300
g6 110 190

 
The number of chromosomes was 25, probability of the uniform mutation 

25%, probability of the Gaussian mutation 62.5%, probability of the simple 
crossover 6.25%, probability of the arithmetic crossover 6.25%. 
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The best result was achieved after 638 generations (15362 fitness function 
computations). The best found shape of the perform is presented in the 
Figure 36a and  the shape after forging in Figure 36b. 

 
 a)  b) 

        
 

Figure 36. a) The best fund shape of the preform, 
b) the shape of the preform after forging 

 
 

Example 8. This example describes evolutionary optimization of two stage 
axisymmetrical preform forging. Shape optimization of an anvil in the first stage 
was performed. The first stage is the open die forging, the second one is closed 
die forging. The criterions were expressed as (25) and (26). The results obtained 
for both criterions are very close to each other. The shape of the anvil described 
using NURBS function is shown in the Figure 37. The 8 parameters of the 
NURBS curve were searched. 

 

 
 

Figure 37. The shape of the anvil 
 
The perform had cylindrical shape. The material parameters were the same 

as in the Example 7. The friction coefficient was equal to 0.3. The model was 
discretized using quadrilateral elements. The evolutionary algorithm with 10 
chromosomes was used. The Gaussian mutation and the simple crossover 
operators were applied. 

The Figure 38a shows results obtained after the flat anvil forging in the first 
stage and Figure 38b after closed die forging in the second stage. The best found 
result is presented in Figure 39. 



www.manaraa.com

88 T. Burczyński

 
a)  b)  

   
 
Figure 38. The shape of the preform after a) first stage, b) second stage of 

forging 
a)  b)  

   
 
Figure 39. The shape of the preform obtained using the best anvils after  

a) first stage, b) second stage of forging 
 
The speedup of computations, expressed by (20), in this case is presented in 

Figure 40. 
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Figure 40. Speedup of computations 

 
 

7 Topological Optimization of 2-D and 3D Structures Using 
Evolutionary Computing 
 

7.1 Introduction 
 

Shape and topology optimization have been active research areas for some time. 
Recently, several innovative approaches for topology optimization have been 
developed. Perhaps one of the simplest optimization method is the method based 
on removing inefficient material from a structure, which is named the 
evolutionary structural optimization (Xie and Steven, 1997), however this 
method is not based on application of the evolutionary algorithm but on different 
rejection criteria for removing material which depending on the types of design 
constraints. 

One of the most famous of the structural optimization approaches is the 
approach based on material homogenization method which was introduced by 
Bendsøe and Kikuchi (1988) and has been applied to various optimization 
problems. The homogenization design method assumes introduction of the 
periodic microstructures of a particular shape into the finite elements of the 
discretized domain. The size and orientation of the microstructures in the 
elements determine the density and structural characteristics of the material in 
the elements. An optimization process consisting in application of the 
mathematical programming techniques leads to the minimization of the 
structure’ compliance by changing of the orientation and size of the 
microstructures. In effect of the optimization process composite structures 
emerges. 

Another  approach to the structural optimization is based on generating 
inside a domain a new void (so-called bubble) of the basis on special criteria and 
next on performing simultaneous shape and topology optimization. This 
approach was originated by Eschenauer and Schumacher (1995). Coupling this 
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approach and boundary elements with genetic algorithms was considered by 
Burczy�ski and Kokot (1998). From the mathematical point of view this 
approach is based on replacing a one-connected domain by a multi-connected 
domain. 

Next interesting approach assumes discretization of the domain into binary 
material/void elements introduced by Anagnostou et al (1992). This approach 
was developed by Kirkpatrick et al (1983), who proposed finding of the optimal 
material configuration within the design domain by use of simulated annealing. 
While Jensen (1992) and Sandgren et al (1990), proposed application of the 
genetic algorithm in order to solve similar optimization problems. This approach 
has been developed by Chapman et al (1995). 

One of the most interesting of the recent approaches to the structural 
optimization problem is method named Multi-GA System introduced by Woon 
et al (2003) which assumes application of two simultaneously and parallel 
running genetic algorithms. The first external genetic algorithm is used to define 
the optimum shape of the structure through operating on the external boundary 
while the second internal is used to optimise the internal topology. This method 
does not require application of the post-processing or additional algorithms to 
generate smooth boundaries. 

Presented in this chapter results are based on application of the evolutionary 
algorithm and finite element method to the optimization problems of 2-D and 
3D structures. They are an extension of previous works concerning such an 
optimization problems (Burczy�ski et al, 2003, 2007), (Szczepanik 2003). 
Recently, evolutionary methods have found various applications in mechanics, 
especially in structural optimization (Burczy�ski and Osyczka, 2004). The main 
feature of those methods is to simulate of biological processes based on heredity 
principles (genetics) and the natural selection (the theory of evolution) to 
creating of optimal individuals (solutions) presented by single chromosomes. 
Evolutionary algorithms are usually applied in the situations when the 
optimization problems are too complicated for the traditional gradient 
optimization methods.  

The task considered in the present work is related to such a problem. This  
task consists in creating an effective optimization algorithm for 2-D and 3D 
structures in respect of topology, shape and material or thickness arrangement. 
The main advantage of the evolutionary algorithm is the fact that this approach 
does not need any information about the gradient of the fitness function and 
gives a strong probability of finding the global optimum. The fitness function is 
calculated for each chromosome in each generation by solving the boundary-
value problem by means of the finite element method (FEM). In order to solve 
the optimization problem the fitness function, design variables and constraints 
should be formulated. 
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7.2 Formulation of the problem 
 

Consider a structure (plate in plane stress/strain, bending plate or shell)  which, 
at the beginning of an evolutionary process, occupies a domain 

� �0 ,  2  3� �din E d or , bounded by a boundary 0� . The domain 0�  is filled 
by a homogeneous and isotropic material of a Young’s modulus E0 and a 
Poisson’s ratio % . The thickness of the structure g0 is also constant at the 
beginning of the evolutionary process. The 2-D structures are considered in the 
framework of theory of linear elasticity. During the evolutionary process the 
domain �t , its boundary �t  and  the field of Young’s modulus 

� � ,� ��t tE Ex x  or the thickness � � � tg gx  can change for each generation t  
(for t=0, E0=const, g0=const). The evolutionary process proceeds in an 
environment in which the structure fitness is describing by two possibilities: 

 
� the objective is to minimize of the stress functional 
 

� �& �
�

� � J d  (27)  

where &  is an arbitrary function of stress tensor � , with a constraint  
imposed on the volume of the structure max' � �V V , 

� the objective is to minimize the volume of the structure 
 

�

� � J d  (28)  

with constraints imposed on equivalent stresses � eq  of the structure 
 

� � max ,� �� ��eq x x  (29)  
 
In order to solve the formulated problem FE models of the structures are 

considered (Zienkiewicz, 2000). The structure is divided into finite elements 
, 1, 2,...,� �e e R , and node displacements are calculated by solving a system of 

linear algebraic equation 
 
KU=F (30)  
 

where U is a column matrix of unknown displacements, F is a known column 
matrix of acting forces and K is a known global stiffness matrix of the structure 
whose elements are given as follows: 
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e

e T

V

K = B DBdV  (31)  

 
where D and B are the known elasticity and geometrical matrices, respectively, 
Ve represents the volume of the finite element. 

The distribution of Young’s modulus � � , ��t tE x x  or thickness 

� � , ��t tg x x  in the structure is describing by a surface 
 

� � � �2 2,  or , ,  ( , )� � �E gW H W H x yx x x x x  (32)  
 

for plate in plane stress/strain, bending plate or a hypersurface 
 

� � � �3 3,  or , ,  ( , , )� � �E gW H W H x y zx x x x x  (33)  
 
for shell (Figure 41). The surfaces (hypersurfaces) � � � � i E gW Wx x  are 

stretched under ,  ( 2,  3)( �d dH E d  and the domain �t  is included in dH , 

i.e. � �� ) d
t H . The shapes of the surfaces (hypersurfaces) � � � � i E gW Wx x  is 

controlled by genes hi, i=1,…,N, which create a chromosome 
 

1 2[ , ,..., ,..., ]� i Nch h h h h  ,    min max� �ih h h  (34)  
 
where  

minh  - the minimum value of the gene, 
maxh  - the maximum value of the gene. 

Genes are values of the function � � ,  ,� � �W E gx  in interpolation nodes xi, 

i.e. � ��i ih W x , i=1,2,…,N. 
The assignation of Young’s moduli or thickness to each finite element 

, 1, 2,...,� �e e R  is adequately performed by the mapping: 
 

� � , , 1, 2,...,� � � �e E eE W e Re ex x   (35)  

� � , , 1, 2,...,� �� �e g eg W e Re ex x   (36)  
 
It means that each finite element can have different material. When the 

value of  Young’s modulus or thickness for the e-th finite element is included in: 
- the interval min0 � "eE E  (or min0 � "eg g ), the finite element is eliminated 

and the void is created, 
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- the interval min max� "eE E E  (or min max� "eg g g ), the finite element remains 
having the value of the Young’s modulus  from this material (Figure 42). 

 

 
 
 

Figure 41. Illustration of the idea of genetic generation for 2-D structure 
 

 
 

Figure 42. Requirements for elimination and existence of the finite 
elements 
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7.3 Interpolation procedures 
 

In the considered work three different interpolation procedures have been 
applied: (i) interpolation procedure of the function ( , )f x y  used for solving tasks 
of the optimization of plates in plane stress/strain and bending plates, (ii) 
interpolation procedure of the function ( , , )f x y z  used in the case of the 
optimization of shells and (iii) two interpolations procedures for 3-D problems. 

For optimization problems of the plates in plane stress/strain and bending 
plates the interpolation surface which is described by the following expression 
has been applied 

 

1

2

16

( , )  ( )�

* +
, -
, -� . , -
, -
, -/ 0

�

h
h

W x y

h

-1 -1� X Y   (37)  

where 
 

2 3 2 3 2 3 2 3 2 2

2 2 2 3 3 3 3 2 3 3

[1, , , ] [1, , , ] [1, , , , , , , , , ,
                                                   , , , , , ]

� . �x x x y y y y y y x xy xy xy x x y
x y x y x x y x y x y

�   (38)  

 
and X and Y matrices are given as follows 
 

2 3                  1           
1 0 0 0 0
1 1 1 1 1

    
1 2 4 8 2
1 3 9 27 3

* +
, -
, -� �
, -
, -
/ 0

x x x

X Y
  (39)  

 
In the case of shells optimization problems, the application of the 

interpolation procedure of the function ( , , )f x y z , creates some difficulties, 
which are connected with the curved shape of the shell. There are some 
difficulties with the adaptation of the procedure to the number of the control 
points and to the distribution of the control points in the three-dimensional space. 
In connection with the mentioned difficulties, for the problems of the shells 
optimization, the interpolation procedure based on the finite element mesh, is 
introduced (Figure 43). That procedure (Table 12) is grounded on the analysis of 
the neighbourhoods of the individual nodes. 
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Table 12. Interpolation procedure 
 

Read nodes i=1,2,...,G  and elements e=1,2,...,E   
For i=1,2,...,G  read initial vector 0 0 0

1 2, ,..., wp p p   
of the optimization parameters 
 
For k=0,1,2,...,K      * k – iteration step * 
{ 

For i=1,2,...,G     * for all the nodes * 
{ 

1k k
i ip p� �  

For  j=1,2,...,M      * for all neighbour-nodes of the node i * 
compute max(pj) 
compute min(pj) 
compute pi=1/2[max(pj)+ min(pj)] 
} 
For  c=1,2,...,C     * for all control points * 
{ 
 pc=hi        * rewriting of the changed parameter values in the   
                 control points to the initial values  
                 (values of the genes) * 
} 

} 
 

 

 
 

Figure 43. Nodes Sj  being in neighbourhood of the node Pi 
 

In the case of 3-D structures the distribution of Young’s modulus 
� � � �, , , , , ��tE x y z x y z  in the structure is described by a hyper surface 

� � � � 3, , , , , �W x y z x y z H . The hyper surface � �, ,W x y z  is stretched under 
3 3(H E  and the domain �t  is included in 3H , i.e. � �3� )t H . 

The shape of the hyper surface � �, ,W x y z  is controlled by genes dj, 
j=1,2,…,N, which create a chromosome 
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1 2, ,..., ,...,� j Nch d d d d   (40)  
 
Gene values are described by the function � �, ,W x y z  in interpolation nodes 

(control points) � �, ,
j

x y z , i.e. � �, ,* +� / 0j j
d W x y z , j=1,2,…,N. 

The following constraints are imposed on the genes 
 

min max� �d d dj j j   (41)  

 
where min

jd  - the minimum value of the gene and max
jd  - the maximum value 

of the gene. 
In the first interpolation – the multinomial interpolation of the hyper surface 

is expressed as follows  
 

� �
1

1 1 1

27

( , , ) � � �
* +
, -� 1 . . �, -
, -/ 0

d
W x y z

d
X Y Z   (42)  

where 
 
1 . .2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

=[1,x,x ] [1,y,y ] [1,z,z ]=[1,z,z ,y,yz,yz ,y ,

y z,y z ,x,xz,xz ,xy,xyz,xyz ,xy ,xy z,xy z ,

x ,x z,x z ,x y,x yz,x yz ,x y ,x y z,x y z ]

  (43)  

 
and X, Y and Z are matrices described as follows 
 

1 0 0
1 1 1
1 2 4

* +
, -� � � , -
, -/ 0

X Y Z   (44)  
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Figure 44.
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Table 13.  Interpolation procedure in optimization of 3-D structures 
 

 
 

are calculated by equation 
 

1 1 [max( ) min( )],  1, 2,...,
2

� � � �k k k
i j jp p p j M   (49)  

 
where: 
T[i] – vector determining position of control points (if  T(i) is equal one –i-th 

element contains control point, if T(i) is equal zero – i-th element does not 
contain control point). 

M � number of neighbours ,  1,2,...,jS j M�  for i-th element ,  1,2,...,iP i R�  
(Figure 45), 

1k
ip �  � value of the parameter of the optimization for i-th element, in step k+1, 
k
jp  � value of the parameter of the optimization for j-th element which is 

neighbour for element  i-th, in step k-th, 
max( )k

jp  � maximal value of the parameter of the optimization for elements 
which are neighbours for element i-th, in step k-th, 

min( )k
jp  - minimal value of the parameter of the optimization for elements 
which are neighbours for element i-th, in step k-th. 

 

Load nodes i=1,2,...,W  and elements e=1,2,...,E   
For e=1,2,...,E  load the initial vector of parameters optimization 
For k=0,1,2,...,K      „k – step of iteration” 
{ 
For i=1,2,...,E    „for all elements” 
{ 
If T[i]=0 
{ 
For  j=1,2,...,M    „for all neighbouring elements for i – element” 
Calculate max(pj) 
Calculate min(pj) 

Calculate pi
k+1=1/2[max(pj

k)+ min(pj
k)] 

} 
If T[i]=1  pi

k+1= pi
k  

} 
} 
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Figure 45. Elements Sj neighbour with element Pi 
 
For the first interpolation a part of working space may not be used. The 

second interpolation has not this disadvantage. Moreover for the first 
interpolation the number of control points is constant, for the second 
interpolation, the optional number of control points can be loaded (Figure 46). 

 

 
 

Figure 46. Working space for two different interpolations 
 
Minimization of the fitness functions with respect to the chromosome (40) is 

performed by means of an evolutionary algorithm with the floating point 
representation. 

After the FEM discretization the starting population of chromosomes is 
randomly generated. At the next step the main loop of the optimization algorithm 
is performed. 

Operations included in the main loop lead to the calculation of the fitness 
function. It requires that the boundary-value problem should be solved by the 
FEM. After the calculation of the fitness function for all chromosomes in the 
population the evolutionary algorithm is applied. The evolutionary algorithm 
contains the following operators: the ranking selection, the simple and 
arithmetical crossovers, the uniform and boundary mutations and the cloning 
(Michalewicz, 1996).  As the result a new offspring population is created. 

In the optimization algorithm the method of the penalty function is applied. 
The penalty function is taken in the form of  “penalty of die”. In the consequence 
unacceptable chromosomes are eliminated, namely chromosomes which do not 
fulfil the introduced constraints. 
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The end of the algorithm’s work, i.e. a break in the main loop activity, 
occurs after the declared generation number. The algorithm can be also stopped, 
when after the specified number of iteration the change of the fitness function is 
very small. 

The assignation of Young’s moduli to each finite element , 1, 2,...,� �e e R  
is performed by the mapping: 

 
� � � �, , , , , , 1, 2,...,* +� �� �/ 0e ee e

E W x y z x y z e R   (50)  

 
It means that each finite element can have different material. The procedure 

of eliminating finite elements and creating new voids accordingly to values of 
eE  is the same as described before (Figure 42). 

 
7.4 Additional procedure aiding of evolutionary optimization 

 
In order to improve the optimization process, an additional procedure is 
introduced (Figure 47). Values �min and p (adequately minimum stress and stress 
increment) are input data to the procedure. The accuracy of obtained solutions 
depends on the ascribed values of �min and p. Small values of �min and p 
guarantee the more precise solution but it is compensated by the long 
computation time. 

 

 
 

Figure 47. Additional procedure aiding of evolutionary optimization 
(�min - minimum stress, p – stress increment) 
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Implementation of this procedure increases: 
� the number of chromosomes that fulfil imposed constraints, 
� the effectiveness of the optimization algorithm by removing 

unnecessary material which is not strained enough. 
Besides additional procedure facilitates the smooth shape of the structure 
boundary. 

 
7.5 Assignation of materials 

 
The optimization process based on controlling Young’s moduli allows to find the 
optimal solution in which each finite element can have a different value of the 
Young’s modulus. However, in practice structures are made from a specified 
number of materials. Therefore the range of the Young’s modulus value should 
be divided into the enforced number of subintervals (equal to the number of 
materials). Each subinterval represents another material whose the Young’s 
modulus belongs to this subinterval. The subintervals should have the same 
length and their centres correspond with Young’s modulus values of suitable 
materials. The example of this idea for prescribed 3 different materials is 
illustrated in Figure 48. 

 

 
 

Figure 48. Idea of introduction of three materials 
 

7.6  Evolutionary optimization algorithm of topology, shape and material 
or thickness 

 
Minimization of the fitness functions Eq. (27) or (28) with respect to the 
chromosome (34) is performed by means of an evolutionary algorithm with the 
floating point representation (Figure 49). After the FEM discretization the 
starting population of chromosomes is randomly generated. At the next step the 
main loop of the optimization algorithm is performed. Operations included in the 
main loop lead to the calculation of the fitness function. It requires that the 
boundary-value problem should be solved by FEM. After the calculation of the 
fitness function for all of the chromosomes in the population the evolutionary 
algorithm is applied. As the result a new offspring population is created. The end 
of the algorithm’s work, i.e. a break in the main loop activity, occurs after the 
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declared generation number. The algorithm can be also stopped, when through 
the specified iteration number the change of the fitness function is very small. 

 

 
 

Figure 49. Evolutionary optimization of 2-D and 3-Dstructures 
 

7.7  Examples of topological evolutionary optimization of 2D structures 
 
Three numerical examples are considered for 2-D problems. The structures 

are discretized by triangular finite elements and subjected to the volume or stress 
constraints. The results of the examples are obtained by use of described 
optimization method based on sequential evolutionary algorithm of parameters 
included in Table 14. To solve the boundary value problem a professional 
program of finite element method – MSC NASTRAN is used. Using proposed 
method, material properties or thickness of finite elements are changing 
evolutionally and some of them are eliminated. As a result the optimal shape, 
topology and material or thickness of the structures are obtained. 
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Table 14. Parameters of sequential evolutionary algorithm 
Number of chromosomes 100 
Probability of cloning 2% 
Probability of uniform mutation 5% 
Probability of boundary mutation 5% 
Probability of simple crossover 10% 
Probability of arithmetical crossover 10% 
Selection method rang selection 

The task of optimization of 
shape, topology and distribution of three different materials of the bicycle frame 
by minimization of the stress functional and with the volume constraint is 
considered. The size of the initial system and boundary conditions are prescribed 
according to the person of the mass of 90 kg (Figure 50a). 

Table 15. Input data to the optimization task ( )

dimensions  
; ; ;  [mm] forces [kN] 

number of 
design

variables 

range of   [105 MPa]; 
existence or elimination of the 

finite element 

900 ; 610; 440; 
300

Q1=1.0, Q2=0.15, 
Q3=5.0,

Q4=7.5, Q5=0.1, 
Q6=0.75

16 0.5 < 0.75 elimination 
0.75  2.25 existence 

thickness of 
the plate 

[mm] 

 ; 
[MPa] 

materials 
[105 MPa] 

Vmax  
[cm3]

2.0 3.0 ; 3.0 
Material 1.   E=1.0 for 0.75 < 1.25  
Material 2.   E=1.5 for 1.25 < 1.75 
Material 3.   E=2.0 for 1.75  2.25 

450

In the present task the set of 16th control points of the interpolation surface 
has been introduced (Figure 50b). Input data to the optimization program and 
parameters of the evolutionary algorithm are presented in Table 15.  

a)  b)  

              
Figure 50. A bicycle frame: a) the initial geometry with scheme of loading; b) 

distribution of the control points of the interpolation surface 



www.manaraa.com

104 T. Burczyński

The results of the optimization are presented as the map of materials 
distribution (Figure 51a), the map of stresses (Figure 51b), the shape of 
interpolation surface (Figure 51c) and the model of the bicycle (Figure 51d) for 
the best obtained solution. 

a)  b)  

          
c)  d)  

         
Figure 51. The results of  the evolutionary optimization of a bicycle frame. 

The best individual for the t=50th generation: a) distribution of three different 
materials; b) the map of stress; c) the shape of interpolation surface; d) model of 

the bicycle based on optimal frame 
 
Example 10 – optimization of the bending plate. The task of the optimization of 
shape, topology and thickness of the bending plate by minimization of the 
volume functional and with the stress constraint is considered. A plate is loaded 
with the concentrated force Q1 ÷ Q5 and fixed on the boundary (Figure 52a). In 
the present task the set of 16th control points of the interpolation surface has 
been introduced (Figure 52b). Input data to the optimization program and 
parameters of the evolutionary algorithm are included in Table 16. The results of 
the optimization are presented as the map of thickness (Figure 53a), the map of 
stresses (Figure 53b) and the shape of interpolation surface (Figure 53c) for the 
best obtained solution. 

 

Table 16. Input data to the optimization task (Example 10) 
dimensions  
a; b [mm] 

forces 
[kN] 

number of design 
variables 

material 
[105 MPa] 

600; 200 Q1=Q2=Q3=Q4=0.6, Q5=1.2 16 E=2.0 

range of ge [mm];  
existence or elimination of the finite element 

�min 
[MPa] 

�max 
[MPa] 

3.0 � ge < 5.0 elimination;  5.0 � ge � 15.0 existence 4.0 100.0 
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 a)  b)  

    
Figure 52. A bending plate: 

a) the initial geometry with scheme of loading; b) distribution of the control 
points of the interpolation surface (¼ part of the geometry) 

 
a)  b)  

          

                  
 c) 

  
Figure 53. The results of  the evolutionary optimization of the bending 

plate. The best individual for the t=50th generation. a) the map of thickness;  
b) the map of stress; c) the shape of interpolation surface 
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Example 11 – Optimization  of a car wheel. The task of the optimization of 
shape, topology and thickness of a car wheel by the minimization of the stress 
functional and with the volume constraint is considered.  

A car wheel geometry of characteristic dimensions, included in Table 17, is 
built from three surfaces of revolution (Figure 54): the central surface with the 
holes destined for the fastening bolts, the surface of the ring of the wheel and the 
surface connecting the two mentioned earlier. The last one is subjected to the 
optimization process. The shell-structure is loaded with the tangent force s0 
(torsion of the wheel) and with a pressure c0 (pressure in the tyre).  

 
Table 17. Characteristic dimensions of a car wheel 
diameter of the wheel LW 355.6 mm 
width of a tyre LF 175 mm 
diameter of the wheels spacing LK 110 mm 
diameter of a wheel hub LP 60 mm 
thickness of the wheel hub 30 mm 
thickness of a tyre 8 mm 

 
The loadings are applied to the ring of the wheel (Figure 55a). The structure 

is stiffly supported around the holes destined for the fastening bolts and is also 
supported on the central surface in the direction of the rotation axis of the wheel 
(Figure 55a). In the considered task the symmetry of the car wheel (revolution of 
the 1/5 part of the structure) during the distribution of the control points of the 
interpolation hypersurface has been used (Figure 55b). In this way the number of 
design variables (genes) could be decreased and the symmetrical results could be 
obtained. This reasoning is purposeful because of the necessity of the car wheel 
balance.  

Input data to the optimization task and the parameters of evolutionary 
algorithm are included in the Tables 18. The results of the optimization are 
presented as the maps of thickness (Figure 57a) and the maps of stresses (Figure 
57b) for the best obtained solutions. Figure 56 shows the evolution of the best 
individual in chosen generations on the example of the evolutionary optimization 
of a car wheel. 

 
Table 18. Input data to the optimization task (Example 11) 

tangent force 0s  
[N] 

pressure 0c  
[Mpa] 

number of design 
variables 

number of 
control points Vmax [cm3] 

500 0.22 23 86 5 500 

material Range of ge  
[mm] 

existing of an 
element elimination of an element 

Aluminium 4 � ge � 20 4 � ge < 10 10 � ge � 20 



www.manaraa.com

Evolutionary and Immune Computations 107

 

Figure 54. Geometry and characteristic dimensions of a car wheel 
a)   b)  

           

Figure 55. A car wheel: a) the kind of the loading and supporting of the 
shell; b) distribution of the control points of the interpolation hypersurface 

 
7.8 Numerical example for 3-D structures 

 
Example 12. A 3-D „L” structure (Figure 58a) with dimensions and loadings 

given in Table 19 is optimized for the criterion of minimum of the volume with 
constraints imposed on stresses and displacements (Table 20). The Table 21 
contains input data. The optimize structures is discretized by cubic finite 
elements. The parameters of evolutionary algorithm are included in Table 22 and 
material data in Table 23. 

 
Table 19. The dimensions and loading of 3-D structure 

Dimensions [mm] 
A 48 
B 48 
C 24 
D 24 
E 24 

Loading [kN] 
Q 8.45 
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a)  b)   c) 

 

d) e) f)  

 g) h)  

 
Figure 56. Evolution of the best individual in chosen generations on the 

example of the evolutionary optimization of a car wheel. The best individual in 
the generation No.: a) 1, b) 3, c) 6, d) 9, e) 12, f) 17, g) 45, h) 100 

 
 a)  b)  

 

            

Figure 57. The results of  the evolutionary optimization of a car wheel. The 
best individual for the t=100th generation: a) the map of  thickness; b) the map of 

stresses 
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Computational results obtained after 73 generations are presented in the form of 
a map of the distribution of Young’s moduli (Figure 58 b, c), stresses (Figure 58 
d, e) and  a map of displacements (Figure 58 f, g). The structure after smoothing 
process is presented in Figure 59. 

 
Table 20. Constraints  

Constraints 
Dimensions of 

cubicoid Maximal stress Genes 
1�27 

48 x 48 x 24 600 MPa 0 � 1 

 Maximal 
displacement  

 0.08 mm  
 
 

Table 21. Input data 

Minimal Young’s module Numbers of chromosomes 
0.4 x 22105 MPa 80 

 
Type of interpolation Step of iteration in smooth procedure  

multinomial interpolation 25 
 
 
 

Table 22. The parameters of evolutionary algorithm 
 

Parameters of evolutionary algorithm 
Numbers of design variables Numbers of generations 

27 – multinomial interpolation 
11 - interpolation bases on the 

neighborhood of elements 
2000 

Probability of cloning Probability of 
uniform mutation 

Probability of boundary 
mutation 

10 % 5 % 2 % 
Probability of simple crossover Probability of arithmetical crossover 

10 % 10 % 
 

 

Table 23. Material data 

Material data  
Poisson ratio Young’s module (Emax) 

0.3 2e5 MPa 
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Figure 58. L structure: a) the scheme of loading, b), c) distribution of 
Young’s moduli, d), e) map of stresses f) g) map of displacements b), d), f) the 
best solution after first generation, c), e), g) the best solution after optimization 
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Figure 59. The optimal L structure after smoothing 

 
8 Evolutionary Multiobjective Optimization 

 
8.1 Introduction 

 
In many real-world engineering problems several aims must be satisfied 
simultaneously in order to obtain an optimal solution. In the first phase of the 
design process the set of objectives is unclear and the designer has to define 
them as precisely as possible. Moreover, for the multiobjective optimization 
(Augusto et al, 2006), (Coello, 1999, 2000), (Deb, 1999) the goals are usually in 
conflict with each other. For example, the volume of the radiator should be 
minimized while the total dissipated heat flux or maximal value of the equivalent 
stress should be maximized (or minimized also). The common approach in this 
sort of problems is to choose one objective (for example the volume of the 
structure) and incorporate the other objectives as constrains. This approach has 
been presented in previous works Bia�ecki et al (2005), Burczy�ski and  D�ugosz 
(2002, 2006) and D�ugosz (2001), but it has the disadvantage of limiting the 
choices available to the designer, making the optimization process rather 
difficult. 

The evolutionary algorithms using the Pareto approach are proposed as the 
optimization technique. The fitness function is calculated for each chromosome 
in each generation by solving a boundary value problem of thermoelasticity by 
means of the FEM (Beer, 1983). The optimized radiators are modelled as 
structures subjected to mechanical and thermal boundary conditions. The 
interaction of stress and temperature fields is modelled by means of the theory of 
the thermoelasticity. 
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8.2 Multiobjective optimization 
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decrease some criterion without causing a simultaneous increase of another 
criterion. In Figure 60 a bold line is used to marked the set of Pareto optimal 
solutions which is called the Pareto front. 

 

 
 

Figure 60. An example of the biobjective problem 
 
Considering two solutions vector x  and y  for a minimization problem, x is 

contained in the Pareto front if: 
 

1, 2, ... , : ( ) ( )

1, 2, ... , : ( ) ( )

3 � �

4 � "

i i

j i

i k f f
and

j k f f

x y

x y
  (57)  

 
The Pareto optimum always gives not a single solutions, but a set of 

solutions called non-dominated solutions or efficient solutions. 
 

8.3 Multiobjective evolutionary algorithm 
 

In order to solve the optimization problem the evolutionary algorithm (Arabas, 
2001), (Michalewicz, 1996) with the real-coded representation has been 
proposed. The solution of this problem is given by the best chromosome whose 
genes represent design parameters responsible for shape of heat radiator. The 
flow chart of the multiobjective evolutionary algorithm is shown in Figure 61. 

The proposed evolutionary algorithm starts with a population of 
chromosomes randomly generated. Two kinds of the mutation are applied: the 
uniform mutation and the Gaussian mutation. The operator of the uniform 
mutation replaces a randomly chosen gene of the chromosome with the new 
random value. This value corresponds to the design parameter with its 
constrains. For the Gaussian mutation a new value of the gene is created with the 
use of Gaussian distribution. The probability of the mutation decides how many 
genes will be modified in each population The operator of the simple crossover 
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creates two new chromosomes from the two randomly selected chromosomes. 
Both chromosomes are cut in randomly position and merge together. In order to 
compute k objective functions the thermoelasticity problem is solved. 

The selection is performed on the base of a ranking method, information 
about Pareto optimal solutions and the similarity of solutions. This procedure is 
very similar to the method of selection proposed by Fonseca and Fleming 
(1995). 

 

 
 

Figure 61. The flow chart of the multiobjective evolutionary algorithm 
 
The Pareto set is determine in the current population using by (57). The 

Euclidian distance between all chromosomes is defined as follows: 
 

� �2

1

ED( ; ) ( ) ( )
�

� ��
popsize

i j i j
n

x x x n x n   (58)  
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The rank of each chromosome depends on the number of individuals by 
which is dominated and scaled value of the Euclidian distance. This scheme 
helps to conserve diversity in the population. The most similar chromosomes 
have less probability to survive. 

The next iteration is performed if the stop condition is not fulfilled. The stop 
condition is expressed as the maximum number of iterations. The Pareto set in 
each generation is stored into file. On the basis of this files the collective Pareto 
set of optimal solution is generated. 

 
8.4 Evaluation of the fitness function 

 
The fitness function is computed with the use of the steady-state thermoelsticity. 
Elastic body occupied the domain �  bounded by the boundary � is considered 
(Figure 62) 

 

 
 

Figure 62. Elastic structure subjected to thermomechanical boundary 
conditions 

 
The governing equations of the linear elasticity and steady-state heat 

conduction problem is expressed by the following equations: 
 

, , ,
2 (1 ) 0

1 2 1 2
��

� � �
� �i jj j ji i
G G vG u u T

v v
  (59)  

 
, 0� �iikT Q   (60)  

where G is a shear modulus and % is a Poisson ratio, iu  is a field of 
displacements, �  is heat conduction coefficient, k is a thermal conductivity, 
T  is a temperature and Q  is an internal heat source. 

The mechanical and thermal boundary conditions for the equations (59) and 
(60) take the form: 
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_ _

_ _

:  ; :

:  ; :  ; : ( )� 5

� � � �

� � � � � � �

it i i u i

T i i q i i c i i

t t u u

T T q q q T T
  (61)  

 

where 
_ _ _ _

, , , , ,� 5
i i i iu t T q T  is known displacements, tractions, temperatures, heat 

fluxes heat conduction coefficient and ambient temperature respectively. 
Separate parts of the boundaries must fulfil the following relations: 

 
� � � 6 � � � 6 � 6 �

� 7 � � 8

� 7 � 7 � � 8

t u T q c

t u

T q c

  (62)  

 
In order to solve numerically thermoelasticity problem finite element 

method is proposed. After discretization taking into account boundary conditions 
following system of linear equations can be obtained: 

 
KU = F
ST = R

  (63)  

 
where K denotes stiffness matrix, S denotes conductivity matrix, U, F, T, R 
contain discretized values of the boundary displacements, forces, temperatures 
and heat fluxes. 

This problem is solved by the FEM software – MENTAT/MARC 
(MSC.MARC 2001). The preprocessor MENTAT enables the production of the 
geometry, mesh, material properties and settings of the analysis. In order to 
evaluate the fitness function for each chromosome following four steps must be 
performed: 

 
Step 1 (generated using MENTAT) 
Create geometry and mesh on the base of the chromosome genes 
Step 2 (generated using MENTAT) 
Create the boundary conditions, material properties, settings of the analysis 
Step 3 (solved using MARC) 
Solves thermoelasticity problem 
Step4 
Calculate the fitness functions values on the base of the output MARC file 
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8.5 Numerical example 
 

Example 13. Consider a radiator whose cross-section is shown in Figure 63a. 
The structure is made of copper of following material properties: Young 
modulus E=110000Mpa , Poisson ratio 0.35n = , thermal expansion coefficient 

6 116.5 10 Ka -= ×  and thermal conductivity 380 Wk mK= . Six design variables 
are assumed: the length of each fin (Z1-Z4), the width of the fins (the same for 
all fins – Z5) and thickness Z6. The geometry of the radiator is symmetric. The 
total width of the radiator is equal to 0.1m. Table 24 contains limitations of the 
design variables. Figure 63b shows thermo-mechanical boundary conditions. 
Force 10P N�  is applied on each fin. The temperature 0T , ambient temperature 

otT  and the heat convection coefficient �  is equal to 100 , 25 , 20WC C mK� � , 
respectively. The multiobjective problem is to determine the specific dimensions 
of the structure which minimizes the set of proposed functionals (54)-(56). 
 

Table 24. The admissible values of the design parameters. 

Design variable Min value 
[m] 

Max value 
[m] 

Z1, Z2, Z3, Z4 0.01 0.05 
Z5 0.0025 0.006 
Z6 0.0025 0.008 

 
 a)  b)   

                
Figure 63. a) The design variables, b) The geometry and the boundary 

conditions 
 
Several numerical experiments were performed. The set of Pareto optimal 

solutions with an example of the obtained shape for the minimization both: the 
volume of the radiator (f1) and the maximal value of the equivalent stresses (f2) 
is presented in Figure 64a. Figure 64b contains the results for the maximization 
of the total dissipated heat flux and the minimization of the equivalent stresses 
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(f2) simultaneously. The set of Pareto solutions obtained for three proposed 
criterion (f1 – volume, f2 – equivalent stress, f3 – heat flux), are presented in 
Figure 65. 
 

a)     b) 

   
Figure 64. The set of Pareto optimal solution for the two criterion 
 
 

 
Figure 65. The set of Pareto optimal solution for the three criterion 

 
8.6 Concluding remarks 

 
The multiobjective shape optimization of heat radiators has been presented in the 
section. The proposed multiobjective evolutionary algorithm gives the designer 
the set of optimal solutions based on more than one criterion. The choice of one 
objective and incorporate the other objectives as constrains requires performing 
optimization many times with different values of the constrains. Such approach 
makes the optimization process rather inadequate and difficult. Proposed 
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approach is also more convenient than, for instance, to the “weighting method” 
in which fitness function is defined as a sum of objective functions and 
appropriate weights. 

 
9 Immune Optimization 

 
9.1 Introduction 

 
The section deals with an application of global optimization method like the 
artificial immune system to the optimization problems. The main feature of these 
methods is to simulate biological processes. The artificial immune system is 
based on the mechanism discovered in biological immune systems. The main 
advantage of artificial immune system is the fact that these approach does not 
need any information about the gradient of the fitness function and gives a strong 
probability of finding the global optimum. The main drawback of the approach is 
the long time of calculations. 

 
9.2 Artificial immune system 

 
The artificial immune systems (Castro and Timmis, 2003), (Wierzcho�, 2001) 
are developed on the basis of a mechanism discovered in biological immune 
systems. The biological immune system is a complex system which contains 
distributed groups of specialized cells and organs. The main purpose of the 
immune system is to recognize and destroy pathogens - funguses, viruses, 
bacteria and improper functioning cells. The lymphocytes cells play a very 
important role in the immune system. The lymphocytes are divided into several 
groups of cells. There are two main groups B and T cells, both contains some 
subgroups (like B-T dependent or B-T independent). The B cells contain 
antibodies, which could neutralize pathogens and are also used to recognize 
pathogens. There is a big diversity between antibodies of the B cells, allowing 
recognition and neutralization of many different pathogens. The B cells are 
produced in the bone marrow in long bones. A B cell undergoes a mutation 
process to achieve big diversity of antibodies. The T cells mature in thymus, 
only T cells recognizing non self cells are released to the lymphatic and the 
blood systems. There are also other cells like macrophages with presenting 
properties, the pathogens are processed by a cell and presented by using MHC 
(Major Histocompatibility Complex) proteins. The recognition of a pathogen is 
performed in a few steps (Figure 66). 

First, the B cells or macrophages present the pathogen to a T cell using 
MHC (Figure 66b), the T cell decides if the presented antigen is a pathogen. The 
T cell gives a chemical signal to B cells to release antibodies. A part of 
stimulated B cells goes to a lymph node and proliferate (clone) (Figure 66c). A 
part of the B cells changes into memory cells, the rest of them secrete antibodies 
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into blood. The secondary response of the immunology system in the presence of 
known pathogens is faster because of memory cells. The memory cells created 
during primary response, proliferate and the antibodies are secreted to blood 
(Figure 66d). The antibodies bind to pathogens and neutralize them. Other cells 
like macrophages destroy pathogens (Figure 66e). The number of lymphocytes 
in the organism changes, while the presence of pathogens increases, but after 
attacks a part of the lymphocytes is removed from the organism. 

 
 a)  b) 

    
 c)  d) 

 

    
 e) 

  
 

Figure 66. An immune system, a) a B cell and pathogen, 
b) the recognition of pathogen using B and T cells, c) the proliferation of 

activated B cells, d) the proliferation of a memory cell – secondary response, e) 
pathogen absorption by a macrophage 

 
The artificial immune systems (AIS) (Castro and Timmis, 2003) take only a 

few elements from the biological immune systems. The most frequently used are 
the mutation of the B cells, proliferation, memory cells, and recognition by using 
the B and T cells. The artificial immune systems have been used to optimization 
problems, classification and also computer viruses recognition. The cloning 
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algorithm Clonalg uses some mechanisms similar to biological immune systems 
to global optimization problems. The unknown global optimum is the searched 
pathogen. The memory cells contain design variables and proliferate during the 
optimization process. The B cells created from memory cells undergo mutation. 
The B cells evaluate and better ones exchange memory cells. In Wierzcho� 
(2001) version of Clonalg the crowding mechanism is used  - the diverse 
between memory cells is forced. A new memory cell is randomly created and 
substitutes the old one, if two memory cells have similar design variables. The 
crowding mechanism allows finding not only the global optimum but also other 
local ones. The presented approach is based on the Wierzcho� (2001) algorithm, 
but the mutation operator is changed. The Gaussian mutation is used instead of 
the nonuniform mutation in the presented approach. 

The Figure 67 presents the flowchart of an artificial immune system. 
 

 
Figure 67. An artificial immune system 

 
The memory cells are created randomly. They proliferate and mutate 

creating B cells. The number of nc clones created by each memory cell is 
determined by the memory cells objective function value. The objective 
functions for B cells are evaluated. The selection process exchanges some 
memory cells for better B cells. The selection is performed on the basis of the 
geometrical distance between each memory cell and B cells (measured by using 
design variables). The crowding mechanism removes similar memory cells. The 
similarity is also determined as the geometrical distance between memory cells. 
The process is iteratively repeated until the stop condition is fulfilled. The stop 
condition can be expressed as the maximum number of iterations. 
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9.3 Comparison of EA and AIS 
 

The numerical examples present the comparison between an artificial immune 
system and the sequential and distributed evolutionary algorithms. The 
comparison is performed on the base of the optimization of the known 
mathematical functions, i.e.: the Branin function with 2 design variables, the 
Goldstein-Price function with 2 design variables, the Rastrigin function with 20 
design variables, and the Griewangk function with 20 design variables (Figure 
68), for the best parameters of the algorithms (detected earlier for these 
functions). 

In order to find the optimal parameters of the artificial immune system, the 
algorithm has been tested with the change of the most important of them, i.e.: 
number of  memory cells, number of clons, range of the Gaussian mutation and 
the crowding factor. The range of the changes of the particular parameters of the 
artificial immune system is presented in the Table 25. The results of the stage of 
the optimal parameters selection for particular mathematical functions are 
included in the Table 26. 

 
 

Table 25. The range of the changes of the artificial immune system parameters 

the number of  
memory cells 

the number of 
the clones crowding factor Gaussian mutation 

2, 4, 6, …, 100 2, 4, 6, …, 100 0,01; 0,02; …; 1.0 0,1; 0,2; …; 1.0 
 
 

Table 26. The optimal parameters of the artificial immune system  
for particular functions 

the number of  
memory cells 

the number of the 
clones crowding factor Gaussian mutation 

BRANIN 
2 2 0.48 0.1 

GOLDSTEIN-PRICE 
12 2 0.45 0.5 

RASTRIGIN 
2 4 0.45 0.4 

GRIEWANGK 
2 2 0.45 0.1 



www.manaraa.com

Evolutionary and Immune Computations 123

 
 a) 

� �
2

2
2 1 1 12

5 5 1( ) 6 10 1 cos 10
4 8

F x x x x x
9 9 9

� � � �� � � � � � �� � � �
� � � �

 

150,105 21 ����� xx  
� � � � � �

� �
min ,12.275 ,2.275

9.42478,2.475 0.397887

F x F F

F

9 9� � � �

�
 

 

b) 
� � � �� �

� � � �� �

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

( ) 1 1 19 14 13 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x x

x x x x x x x x

� � � � � � � � �

� � � � � � �

22 ��� ix  
� � � � 31,0min �� FxF  

 
     c) 

� �� �2

1
( ) 10 10cos 2

n

i i
i

F x n x x9
�

� � ��  

� �5.12 5.12ix� � �  
� � � �min 0,0, ,0 0F x F� ��  

for n =2 

 

d) 
2

1 1

( ) 1 cos
4000

nn
i i

i i

x xF x
i� �

� �� �� � � � �� �
� �� �

� :  

� �600 600ix� � �  
� � � �min 0,0, ,0 0F x F� ��  

for n =2 

Figure 68. Tested mathematical functions: a) Branin function, 
b) Goldstein-Price function, c) Rastrigin function, 

d) Griewangk function 
 
The sequential and distributed evolutionary algorithms applied for 

comparison with the artificial immune system uses evolutionary operators like 
the simple crossover and the Gaussian mutation. The selection is performed by 
the use of the ranking method. The optimal probabilities of the evolutionary 
parameters for particular mathematical functions are presented in the Table 27. 

The result of the comparison between an artificial immune system and the 
sequential and distributed evolutionary algorithms are presented in the Table 28 
and shown in the Figure 69. 
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The numbers of the objective function evaluations needed to the achievment 
of the value: 
below 0.5 for the Branin function, below 3.1 for the Goldstein-Price function, 
below 0.1 for the Rastrigin function, below 0.1 for the Griewangk function have 
been compared. 

 
 

Table 27. The optimal parameters of sequential and distributed evolutionary 
algorithms for particular functions 

The number of 
subpopulations 

The number of 
chromosomes in each 

subpopulation 

The probability of 
simple crossover 

The probability of 
Gaussian mutation 

BRANIN 
1 20 100% 100% 
2 10 100% 100% 

GOLDSTEIN-PRICE 
1 20 100% 100% 
3 7 100% 100% 

RASTRIGIN 
1 20 100% 100% 
2 10 100% 100% 

GRIEWANGK 
1 10 100% 100% 
2 5 100% 100% 

 
 
 
Table 28. The result of the comparison between an artificial immune system and 

the sequential and distributed evolutionary algorithms – comparison of the 
average number objective function evaluations 

Sequential EA Distributed EA artificial immune 
system 

Average number objective function evaluations 
BRANIN 

188 155 171 
GOLDSTEIN-PRICE 

287 188 325 
RASTRIGIN 

9293 4659 7897 
GRIEWANGK 

22285 13594 6019 
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a)   b) 

 
 c)  d) 

 
Figure 69. Comparison between AIS and EAs for: a) Branin function, b) 

Goldstein-Price function, c) Rastrigin function, d) Griewangk function 
 
 

9.4 Topology immune optimization 
 

Two numerical examples of immune optimization of topology structures:  
; a plate in plane stress (Example 14), 
; a solid body (Example 15), 

by the minimization of the mass with imposed stress or displacement constraints 
are considered. The structures are considered in the framework of the theory of 
elasticity. The results of the examples are obtained by using an optimization 
method based on the artificial immune system with the parameters included in 
Table 29. 
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Table 29. The parameters of the artificial immune system 

the number of  memory cells 8 

the number of the clones 4 

crowding factor 25% 
Gaussian mutation 20% 

 
Example 14 – Immune optimization of  a plate in plane stress. A rectangular 2-D 
structure (plane stress), of dimensions 100 < 200 mm, loaded with the 
concentrated force P in the centre of the lower boundary and fixed on the bottom 
corners is considered.  
 

 
Figure 70. The plate (example 1); a) the geometry; b) the distribution of the 

control points of the interpolation surface 
 
a)  b) 

  
 c)  d)  

     
 

Figure 71. The results of  the immune optimization of the plate: a) the  
solution of the optimization task; b) the map of  mass densities; c) the map of 

stresses; d) the map of the displacement 
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Due to the symmetry a half of the structure has been analyzed. The input 

data and parameters of the artificial immune system are included in Table 30 and 
29, respectively. 

The geometry, the distribution of the control points of the interpolation 
surface are shown in the Figure 70a and 70b, respectively. The results of the 
optimization process are presented in the Figure 71. 

 
Table 30. The input data to the optimization task of a shell bracket 

�ad 
[MPa] 

the thickness 
[mm] 

�min ; p 
[MPa] P1 [kN] range of �e  [g/cm3] 

80.0 4.0 1.0 ; 1.0 2.0 7.3 � �e < 7.5 elimination 
7.5 � �e � 7.86 existence 

 
 

Example 15 – Immune optimization of  a solid body. A 3-D structure with 
dimensions and loading is presented in the Figure 72a and 72b. The input data to 
the optimization program is included in Table 31.  

The geometry, the distribution of the control points of the interpolation 
hyper surface are shown in the Figure 72c. The results of the optimization 
process are presented in the Figure 73 and Figure 74. 

 
 

 
 

Figure 72. Two cases of loading with the hyper surface 
a) first case (compression), b) second case (tension), 

c) the distribution of the control points of the interpolation hyper surface 
 
 

Table 31 Input data - geometry and loading 

Dimensions [mm] Loading Q 
a b c compression tension 

100 100 100 -36.3 [KN] 36.3 [KN] 
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Figure 73. Distribution of mass density for the first case (compression) 
a), b) structure after 50 iteration (the best solution) c) structure after smooth 
 

 
Figure 74. Distribution of mass density for the second case (tension) 

a), b) structure after 50 iteration (the best solution) c) structure after smooth 
 

9.5 Concluding remarks 
 

Taking into account the results of the comparison between the artificial immune 
system and the sequential and distributed evolutionary algorithms, performed on 
the basis of selected mathematical functions, one can conclude that the 
convergence to the global minimum depends on the optimization problem:  

• for the Griewangk function the AIS is more effective than SEA and 
DEA, 

• for the Goldstein-Price function the AIS is less effective than SEA and 
DEA, 

• for the Branin and the Rastrigin functions the AIS is more effective 
than SEA but less than DEA. 

Artificial immune systems can be considered as alternative to evolutionary 
algorithms intelligent global optimization techniques very useful in structural 
optimization. 
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CHAPTER 3 
 

Applications of GA and GP to Industrial Design         
Optimization and Inverse Problems 

V.V. Toropov1,2, L.F. Alvarez, O.M. Querin2 
1School of Civil Engineering, 

 2School of Mechanical Engineering, University of Leeds, UK 

Abstract. In this chapter the use of Genetic Algorithms and Genetic Pro-
gramming for various industrial problems is discussed. Particular attention 
is paid to the case of difficult design optimization problems in which either 
(or both) (i) response functions are computationally expensive as well as 
affected by numerical noise and (ii) design variables are defined on a set of 
discrete variables.  

1 Introduction 

Many real-life design optimization problems have the following common features 
that make application of well-established gradient-based optimization algorithms 
difficult, if not impossible:  
– the objective and constraint functions are evaluated as a result of expensive 

numerical computations, e.g. using an FEM or a CFD code;  
– function values and/or their derivatives may contain numerical noise;  
– domain-dependent calculability of response functions, i.e. situations when 

these functions cannot be evaluated at some points of the design variable 
space; 

– design variables are defined on a set of discrete values. 

The first three features also arise in industrial problems of stochastic analysis, 
particularly when a Monte Carlo simulation is performed. Hence the only realis-
tic way of addressing such problems is to build high quality metamodels (also 
referred to as surrogate models or global approximations) that (i) describe the 
behaviour of the system (or a process) with a sufficient accuracy as compared to 
simulation, (ii) are computationally inexpensive and (iii) do not possess any 
significant amount of numerical noise. When such metamodels are obtained and 
their quality verified, it becomes possible to use them in optimization or a Monte 
Carlo simulation in lieu of expensive simulations.  

The last feature mentioned above, the discrete nature of design variables, is 
most typically addressed by the use of suitable optimization techniques, of which 
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a Genetic Algorithm is currently the most popular choice. Such an algorithm 
may be calling a numerical simulation directly (when it is feasible) or used in 
conjunction with a metamodel that has been built previously. Sections 2 and 3 
show applications of such techniques. 

In order to build a metamodel it is necessary to perform sampling by running 
a sufficient number of numerical simulations in the space of optimization vari-
ables and/or stochastic factors according to a carefully chosen design of 
experiments (DOE). Experiments usually mean numerical simulation at various 
combinations of optimization or stochastic variables but may also include labo-
ratory or in situ experiments. Uniform designs of experiments that are based on 
the concept of an optimal Latin hypercube have been developed with the inten-
tion of gathering as much information on the behaviour of the system (or a 
process) as possible with a minimum number of sampling points. These include 
nested (i.e. individual uniform DOEs used separately for metamodel building 
and validation and then can be merged while remaining uniform) and extended 
(to include pre-defined sampling points while preserving uniformity of a DOE). 
Section 4 describes the use of permutation GA for the creation of uniform 
DOEs. 

The most typically used metamodelling techniques include: 
; Response surface methodology that is further divided into the following 

classes: 
– Linear (e.g. polynomial) regression 
– Nonlinear regression 
– Mechanistic models 
– Application of the Genetic Programming methodology for selection of 

the structure of an analytical expression treated as a metamodel. This 
has been used for creating analytical descriptions of various engineer-
ing systems and processes, also using data produced by laboratory 
experimentation, Toropov (2001). 

; Artificial neural networks 
; Radial basis functions 
; Kriging, Matheron (1963) 
; Multivariate Adaptive Regression Splines (MARS), Freedman (1991) 
; Metamodelling based on the interaction of low- and high-fidelity simula-

tion models that is beneficial for creating high quality metamodels when a 
lower complexity simulation model is available in addition to the original 
high fidelity simulation model. In such a case the metamodel can be based 
on that low fidelity model which is corrected and tuned using only a small 
number of runs of the high fidelity model, Toropov (2001) 

; Moving Lest Squares Method (MLSM), Choi et al. (2001), Toropov et al. 
(2005), is a global metamodelling technique that is flexible enough to de-
scribe the sampling data with high accuracy when the amount of 
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numerical noise is small (in such case it is similar to kriging) but also has 
a capability of filtering out numerical noise when it becomes an issue.  

Once the metamodel has been obtained and verified, various optimization 
techniques can be used, these include genetic algorithms (particularly when 
design variables are defined on a set of discrete variables) and gradient-based 
optimization methods. In the case of stochastic analysis, a large Monte Carlo 
simulation can be performed in order to assess reliability and robustness of a 
system or a process.  

Sections 5, 6 and 7 show applications of Genetic Programming to metamodel 
building. 

2 Weight Optimization of a Formula One Car Composite 
Component Using Genetic Algortithm 

In the development of a new Formula One car, the design process takes ap-
proximately four months and has to go through as many iterations as possible. In 
such a competitive environment small improvements can be crucial, and the use 
of a robust technology to produce the best possible design is an advantage. 

Following a review of industry practice (Nevey and Stephens, 2000), there 
appears to be no consistent commercial approach for the application of optimiza-
tion techniques to composite laminates.  

A genetic algorithm (GA) has been applied to search for the optimum combi-
nation of discrete design variables (fibre orientation and number of plies) that 
produce the maximum structural stiffness at the lowest mass. Simulations of the 
composite components have been performed using the linear static analysis code 
Altair OptiStruct (2000). 

An application is presented where the developed methodology is applied to 
the weight optimization of the Jaguar R3 front wing,  Stephens et al. (2002). 

2.1 Optimization problem 

The definition of a directional fibrous laminated composite requires the specifi-
cation of the fibre direction and the number of plies, see Figure 1. The ultimate 
objective of the optimization methodology is to automatically determine the 
optimum laminate configuration (e.g. the optimum number of plies and the ori-
entation of every ply). 

The optimization problem is to minimize the weight F0(x) of a laminated 
composite component, subject to various constraints Fj(x). The design variables 
x are the orientation of the fibre and the number of plies, which have been 
grouped into bundles for manufacturing requirements: 
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2.2  Genetic algorithm 

A genetic algorithm (Goldberg, 1989) is a machine learning technique modelled 
upon the natural process of evolution.  Genetic algorithms differ from conven-
tional optimization techniques in that they work on a whole population of 
individual objects of finite length, typically binary strings (chromosomes), which 
encode candidate solutions using a problem-specific representation scheme.  
These strings are decoded and evaluated for their fitness, which is a measure of 
how good a particular solution is. Following Darwin's principle of survival of 
the fittest, strings with higher fitness values have a higher probability of being 
selected for mating purposes to produce the next generation of candidate solu-
tions. 

 
 

 

Baseline configuration  Optimized lay-up 

Figure 1. Optimization of a composite laminate  

Selected individual design solutions are reproduced through the application of 
genetic operators.  A string selected for mating is paired with another string and 
with a certain probability each pair of parents undergo crossover (sexual recom-
bination) and mutation.  The strings that result from this process, the children, 
become members of the next generation of candidate solutions. 

This process is repeated for many generations in order to artificially evolve a 
population of strings that yield a solution to a given problem, see Figure 2. For 
full detail of GA theory applied to the optimization of composites, see Gürdal et 
al. (1999). 
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Figure 2. Evolutionary algorithm 

 

The main features of the GA used in this study are: 
; A small percentage of the population, the elite, is transferred unchanged to 

the next generation. 
; Uniform crossover (Figure 3) creates an offspring by copying bits from the 

corresponding parents selected randomly and with equal probability. 

1 0 1 1 0 0 1 1 0 1

0 1 1 1 1 0 1 1 0 1

Parent 1

Offspring

0 1 0 1 1 1 1 0 1 1Parent 2  
Figure 3. Uniform crossover 

 

; Tournament selection of size two (or more) selects the best individual from 
a subpopulation of two (or more) randomly selected strings. 

; Linear scaling of the fitness function applies the transformation 

Fscaled  =  a * F + b 

where F is the actual fitness of an individual and a and b are derived from 
the coordinate system change [Fav , Fmax] to [Fav , c*Fmax] as follows: 

� � � � av
avmax

av Fab
FF

Fca ��
�

�
� 1

1
 

where, for a current population, Fav is the average fitness value and Fmax is 
the fitness value of the best individual. In this study, c was taken as 3. If 
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Fscaled goes negative, the corresponding individual is repeatedly replaced 
with another one created randomly until Fscaled becomes positive. 

; Gray coding is a binary string representation such that 2 consecutive num-
bers differ in only 1 bit (Figure 4). 

0 0 1 1

GrayBinaryDecimal

0 1 0 0

0 0 1 0

0 1 1 0

3

4  
 

Figure 4. Gray coding 
 

This coding is less disruptive than binary coding for the mutation operator 
and makes the search more incremental.  

Assuming G is a Gray coded string with n bits    [Gn Gn-1 … G1] where Gn is 
the most significant bit, B is the corresponding binary coded string           [Bn 
Bn-1 … B1], and ^ is the bitwise exclusive OR operator (XOR), the conver-
sion algorithms are: 

o From Gray to binary:  
j = n;  Bj = Gj 

j = n-1 � 1;  Bj = Bj+1 ^ Gj 

o From binary to Gray: 
j = n;  Gj = Bj 

j = n-1 � 1;  Gj = Bj+1 ^ Bj 
 
; Local search (Sahab, 2001) performs a coordinate search in the positive and 

negative direction through all the variables (Figure 5). In this search: 
� Initial starting point is the optimum solution returned from the GA. 
� The increment steps Dx are those defined for the corresponding discrete 

variables. Steps are increased or decreased within the variable range. 
� Every new solution serves as starting guess for another local search, until 

no improvement can be found. 

; If two strings have the same fitness, one of them is deleted and a new one 
randomly created. 
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Figure 5. Local search 

 

For constrained optimization problems, an exterior penalty function can be 
adopted to transform a constrained optimization problem into an unconstrained 
one. Penalty functions are defined in the exterior of the feasible domain, so that 
constraints are applied only when they are violated. The fitness function is de-
fined as follows: 

Fitness = � ��
� -

-
0

+

,
,
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*
��
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t
jFmaxrF

1
0 0,1)()( xx               (2) 

where 0F  is the normalised objective function, r is a penalty multiplier and t 
defines the power of the penalty function. 
 

GA parameters 

The following parameters have been assumed in the optimization process: 

; Population size: 200 
; Elite: 10% 
; Mutation: 1% 
; 50% of the population with the worst fitness are replaced in every  

 generation. 
; Gray coding with vacant positions (if available) filled with bits from the 

beginning of the string. 
; In the expression (2), penalty multiplier r = 10 and linear penalty func-

tion (t = 1) lead to a moderate penalisation which sometimes allows for 
unfeasible solutions. A quadratic penalty functions (t = 2) would typi-
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cally converge to an unfeasible solution, while a square root penalty 
function (t = 0.5) would be a conservative approach and converge in the 
feasible domain. 

2.3 Front wing optimization 

The final objective of this study was to optimise the weight of the front wing in 
the Jaguar R3 Formula One car for the 2002 racing season. The baseline model 
was divided into 5 designable areas with 3 bundles of plies in each section, see 
Figure 6. This lay-up defines 15 fibre angles and 15 numbers of plies. The allo-
cation of design variables assumed that the model is symmetric about the 
centreline of the wing. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. R3 front wing lay-up 

The problem was to minimize the mass of the wing, subject to the following 
normalised constraints: 

; Maximum displacement under a 50 kg mass placed on the wing (FIA regu-
lation, FIA, 2002) � 1 mm. 

; Maximum displacement under aerodynamic loading (calculated from a 
CFD  analysis) � 1 mm. 
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; Twist under aerodynamic loading (relative displacement of the leading and 
 trailing edge) � 1 mm. 

The optimization was carried out for both fibre orientation and number of 
plies concurrently. The proposed methodology achieved a 5% saving over the 
baseline weight of the wing. The GA convergence history is plotted in Figure 7. 

 

 

 

 

 

 
Figure 7. GA convergence history 

2.3 Conclusion 

A methodology for optimising composite lay-ups combines a genetic algorithm 
with a Finite Element software and finds concurrently the fibre orientation and 
the number of plies. 

The results of the optimization have been used in the following ways: 
; It showed trends of the wing lay-up, i.e. biased more to the reduction of 
bending in the middle of the wing and biased more to the reduction of twist at 
the outer edge. 

; The final results produced the wing lay-up that was put into the front wing 
for the R3 Formula One car. 

3 Application of Optimization Techniques to Structural 
Damage Recognition 

An identification of the location and degree of damage sustained by an engineering 
structure is often of considerable importance in structural engineering practice. 
Visual inspection and extensive field testing are usually employed to locate and 
quantify the degree of degradation of a structure but this can be expensive and time 
consuming. An alternative method of non-destructive testing is based on the moni-
toring of changes in dynamic structural characteristics such as natural frequencies. 
These can be obtained by measurements at a limited number of points of the struc-
ture (often even one point) and are relatively independent of the chosen location. 
Most importantly, these characteristics are sensitive to changes in the mass and 
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stiffness of the structure. Therefore, data on the changes in the dynamic character-
istics can be used to calculate local decrease in the stiffness which indicates the 
presence of the structural damage. The problem then can be formulated as an iden-
tification problem of finding the stiffness matrix which reproduces the measured 
data, see, e.g., Hassiotis and Jeong (1993), and can be solved using advanced opti-
mization techniques. 

Various formulations have been used by investigators in the past for the ad-
justment of the stiffness matrix to meet natural frequencies and mode shapes 
observed in the experiment, see Baruch (1982), Kabe (1985) and Lapierre and 
Ostiguy (1990). Sensitivity analysis techniques that make use of the sensitivities of 
the eigenvalues and eigenvectors to the changes in the stiffness have also been used 
to verify and upgrade the analytical model given measured frequencies and eigen-
modes. Cawley and Adams (1979) used the first order perturbation of the basic 
eigenvalue equation to obtain sensitivities necessary to locate the damage in a 
structure using natural frequencies. The location of the damage was assumed to be 
where the theoretically determined ratio of changes in any two frequencies was 
equal to the experimentally measured value. Hajela and Soeiro (1990a) presented a 
more general approach based on the use of either static displacements or frequen-
cies and modes for damage detection. The damage was modelled on an element-
by-element basis as changes in sectional properties, which then contribute to varia-
tion in the elements of the structural stiffness matrix. The output error approach, 
where changes are made in numerical model to match the experimental response, 
and the equation error approach where the model parameters are adjusted to obtain 
a match between the left and right hand sides of the response equation, have been 
used to detect a simulated damage in a series of truss and semimonocoque struc-
tures (see Hajela and Soeiro, 1990b). 

In this section the output error method of system identification is used to dem-
onstrate the assessment of the presence of damage in steel frame structures. The 
approach is based on the use of measurements of natural frequencies only because 
information on shape modes is not easily obtainable with sufficient accuracy. The 
results obtained using a derivative-based optimization technique are compared to 
those obtained using a genetic algorithm. 

3.1 Identification problem formulation 

In a finite element formulation  characteristics of the structure are defined in terms 
of the stiffness and mass matrices K and M, respectively. Any variations in these 
matrices, e.g. introduced by damage, would affect the dynamic response character-
istics of the structure. The analytical model describing the eigenvalue problem for 
an undamped system can be stated in terms of the matrices K and M, the i-th ei-
genvalue 2

i> , and the corresponding eigenmode ?i  as follows: 
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(K � 2
i> M) ?I  = 0                                                 (3) 

Matrices K and M  are to be adjusted to minimize the differences between the 
experimentally observed eigenvalues and values obtained from the analytical (e.g., 
finite element) model. As a variation in the system matrices results in changed 
frequency response, the damage assessment problem, formulated as an inverse 
problem, is to relate these differences to changes in specific elements of the system 
matrices. In order to describe the influence of the presence and extent of damage 
on the matrices K and M, the optimization variables x are to be introduced such as 
sectional properties of individual structural elements (the cross-sectional area, 
moments of inertia) or material parameters (Young's modulus, etc.). These depend-
encies may be stated in a functional form: K = K (x),  M = M (x). 

Two basic approaches can be suggested for the description of the presence, lo-
cation and the extent of structural damage by optimization variables x. In the first 
one, an individual variable xi  can describe the extent of possible damage at i-th 
location, e.g. in the i-th finite element. This formulation leads to a continuous op-
timization problem, can easily describe the presence of multiple damage but the 
number of variables can be large when a large scale finite element model is used.  

Alternatively, the vector of optimization variables can be considered as a set of 
L couples LL xxxxxx 21

2
2

2
1

1
2

1
1 ,,...,,,,  where jx1 is a number of a damaged element in 

the FE model and jx2  describes the extent of damage occurring in it, j = 1,..., L and 
L is the assumed maximum number of damaged elements. Such approach leads to a 
considerably smaller number of variables but presents a discrete or mixed discrete-
continuous optimization problem. In this section the use of both approaches is 
presented. 

Using the output error approach, the damage identification problem can be for-
mulated as the following optimization problem: 

Find the optimization variables x by minimizing the differences between the fre-
quencies M

i>  measured in the course of laboratory experiment or operation and 
the frequencies )(xA

i> obtained by the Finite Element analysis: 

minimize @ A2
)(xA

i
M
i >> � , i = 1,...,F           (4) 

where F is total number of modes of vibration used for the identification. The for-
mulated problem is a multicriterion one but it can be transformed to a more 
conventional optimization problem by formulating a single criterion. A linear com-
bination of individual differences (4) is a most typically used one, the optimization 
problem can then be reformulated in the following form: 

@ AB C�
�

�
F M

i
A
i

M
ii

i
w

1
/)(minimize

2
>>> x                            (5) 



www.manaraa.com

144 V.V. Toropov, L.F. Alvarez and O.M. Querin

where the weights iw   describe the relative importance of the match between fre-
quencies of the i-th mode. 

3.2 Experimental procedure  

The test structure used for the investigation was a steel portal frame clamped at the 
base of both columns as shown in Figure 8. All parts of the frame have the same 
800 mm < 400 mm rectangular hollow section of 4 mm thickness. The first ten 
natural frequencies were measured on the undamaged frame and also when three 
stages of progressive damage (classified as mild, medium and severe) were applied 
at the location close to the top joint. In all cases, the damage was applied by remov-
ing the material symmetrically relative to the beam’s neutral axis thus reducing the 
cross section area to 64%, 54% and 35% of the original value for the undamaged 
structure. 

For the experimental data acquisition a standard  technique of modal structural 
testing has been used. Natural frequencies were measured by the impulse technique 
because of its speed and ease of execution. The oscillations in the structure have 
been excited with an instrumented hammer with a build-in force transducer Bruel 
& Kjaer (B&K) type 8200. The acceleration of frame was measured by using a 14 
g accelerometer (B&K type 4369) so the weight of that comparing to the weight of 
the frame was negligible. The signals from hammer and accelerometer are ampli-
fied by B&K charge amplifiers type 2635 as schematically shown in Figure 8. 

The excitation and response signals have been measured and processed using 
the dual channel spectral analyser B&K type 2032. It transforms the two sampled 
time functions into frequency spectra by a Fast Fourier Transformation (FFT) and 
subsequently computes the ratio of these functions yielding the Frequency Re-
sponse Function (FRF). For example, two measured FRFs for the undamaged 
frame (solid curve) and the damaged frame (dashed curve) are shown in Figure 9. 
The difference between the natural frequencies for the damaged and the undam-
aged frame can easily be seen. As expected, the natural frequency for the damaged 
structure is  
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Figure 8.  The portal frame and instrumentation set up: accelerometer (1), charge  
amplifier (2), dual channel analyzer (3), instrumented hammer (4), PC (5), damage 
position (6) 
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Figure 9. Plot of frequency response functions for undamaged (solid curves) and 
damaged frame (dashed curves) 

 
lower than for the undamaged one. The adequate number of the accelerometer 
positions along the perimeter of the frame has been established to ensure that no 
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resonance is overlooked. To obtain a sufficient resolution in low frequencies the 
measurements have been repeated in several frequency spans (25, 50, 100, 200 and 
400 Hz.). Some additional measurements were executed to detect and eliminate out 
of plane mode shapes and frequencies. The results are shown in Table 1. 

 
Table 1. Experimental and analytical values of natural frequencies 

 Undamaged frame Damaged frame 
Analytical (FEM) Experimental Experi- 

ment Before       
validation 

After         
validation 

Mild         
damage 

Medium     
damage 

Mode 
num-
ber Freq., 

Hz 
Freq., 

Hz 

Diffe-
rence, 

% 

Freq., 
Hz 

Diffe-
rence, 

% 

Freq., 
Hz 

Chan-
ge, 
% 

Freq., 
Hz 

Chan-
ge, 
% 

 1  12.59 15.41 22.3 12.61 0.1 12.63 0.3 12.59 0.0 

2 18.47 19.59 6.0 18.31 -0.8 18.34 -0.7 18.13 -1.9 

3 44.13 45.34 2.7 43.65 -1.0 44.13 0.0 44.13 0.0 

4 76.38 76.50 0.1 75.47 -1.1 74.38 -2.6 72.13 -5.6 

5 128.5 135.0 5.0 128.1 -0.3 128.5 0.0 128.5 0.0 

6 140.8 163.7 16.3 141.0 0.1 140.0 -0.5 139.0 -1.2 

7 173.8 198.9 14.5 175.0 0.7 173.8 0.0 173.5 -0.1 

8 223.5 237.0 6.0 225.2 0.7 220.0 -1.6 216.0 -3.4 

9 306.5 313.7 2.3 308.4 0.6 306.0 -0.2 305.5 -0.3 

10 361.0 367.3 1.7 364.7 1.0 354.0 -1.9 348.0 -3.6 

 

A finite element model of 56 plane beam elements was used. It was found to 
be very important to validate the model by minimizing the difference between the 
experimental and analytical results. An optimization procedure was used to vali-
date the model using the experimental results on ten first natural frequencies for 
the undamaged frame. Four parameters have then initially been considered as 
optimization variables: the Young’s modulus and the density of the material, the 
area of cross section, and the moment of inertia of small artificially introduced 
elements at the base of both columns. Variation in the last parameter was intended 
to cover the uncertainty of the boundary conditions (clamped columns) and had 
the most profound effect on the validation. In addition, the effect in changes in the 
FE mesh was studied and found to be insignificant. The results of the model vali-
dation are presented in Table 1 
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3.3 Application of a derivative-based technique 
The continuous optimization problem has been solved by the Sequential Quadratic 
Programming (SQP) method combined with a genetic algorithm used to produce a 
high quality starting guess. 

First it was assumed that there was only one damage occurring at the one of the 
joints, as these are more probable points in the structure to be damaged (see Ravaii 
et al., 1998a). Then there are just five possible places for damage location and 
because of the symmetry condition only three optimization variables were defined 
in the optimization problem: one for the top joint, one next to the corner and one at 
the base. Both the location and size of the damage were successfully detected. In 
order to determine the number of modes necessary to reliably detect the damage, 
the number of modes was incremented one by one. The results are presented in 
Table 2. 

 
Table 2. Damage detection and the number of modes used   

(three possible locations) 

Damage 
location and 

extent 

Number of frequencies used for damage identification and corre-
sponding percentage of remaining area of cross-section found 

Ty
pe

 o
f a

ct
ua

l  
da

m
ag

e 

Joint Area 
(%) 1 2 3 4 5 6 7 8 9 10 

1 100 81 105 105 105 105 105 103 90 89 95 

2 64 77 99 99 67 67 66 66 63 63 59 M
ild

 

3 100 102 102 104 103 103 102 100 104 105 104 

1 100 86 70 105 105 105 105 95 89 86 98 

2 54 26 98 53 50 50 50 50 49 49 47 

M
ed

iu
m

 

3 100 93 103 95 96 97 97 96 97 101 95 

1 100 86 105 105 105 90 88 89 104 105 103 

2 35 26 33 33 32 33 33 33 32 32 32 

Se
ve

re
 

3 100 93 92 93 95 105 105 105 104 105 103 
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As could be expected, for a mild damage at least first four natural frequencies 
were needed to detect the damage but for the medium and severe damage the first 
three and two modes, respectively, were sufficient. Next, it was assumed that the 
damage could happen at a greater number of possible locations (see Ravaii et al., 
1998b). Thus eight more possible locations were considered: five additional possi-
ble points of damage on a rafter and three other ones on a column and also three 
points at the joints  as  in  the  previous formulation.  There  was  no restriction on  
the number of damaged elements applied, i.e. this could vary from zero (no damage 
found) to 11 (damage at all possible locations). The first six natural frequencies 
were used to detect the damage. The location and size of the damage were success-
fully detected again. The results are presented in Table 3. 

 
Table 3. Damage detection  using the first six natural frequencies  

(eleven possible locations) 

Damage location and extent 

Ty
pe

 o
f 

da
m

ag
e 

FE. 
No. 1 2 3 4 5 6 7 8 9 10 11 

Ex
ac

t  
ar

ea
 (%

) 

100 64 100 100 100 100 100 100 100 100 100 

M
ild

 

D
et

ec
te

d 
 a

re
a 

(%
) 

105 65 105 105 93 101 105 105 105 98 101 

Ex
ac

t a
re

a 
(%

) 

100 54 100 100 100 100 100 100 100 100 100 

M
ed

iu
m

 

D
et

ec
te

d 
 

ar
ea

 (%
) 

105 50 100 105 96 105 105 105 105 95 101 

Ex
ac

t  
ar

ea
 (%

) 

100 35 100 100 100 100 100 100 100 100 100 

Se
ve

re
 

D
et

ec
te
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re
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(%
) 

100 32 102 105 96 98 105 105 105 93 95 
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3.4 Application of a genetic algorithm  

A genetic algorithm has been applied to the damage recognition problems in both 
continuous and discrete-continuous formulations.  

First, in order to compare the performance of the GA with that of SQP, a GA 
has been applied to the continuous optimization problem. The cross-sectional 
areas of eight elements of the FE model were considered as optimization vari-
ables. Lower  and  upper bounds of  these  cross-sectional areas were taken as 1 
and 128 respectively, where 100 (or near) represents an undamaged element. The 
discretization of design variables was defined by increments by one thus resulting  
in the overall string length of  56 for all of the eight design variables. The following 
parameters of the genetic algorithm have been used: size of the population 60, 
proportion of the elite of 0.4, the probabilities of crossover and mutation have been 
taken as 0.6 and 0.01 respectively. The computations were carried out for three, 
five and eight possible damaged locations and in all cases the damage was success-
fully detected. The results for damage detection with eight possible damage points 
(eight optimization variables) are shown in Table 4. 

Table 4. Damage detection using GA (eight possible locations) 

Damage location and extent 
Element No. 1 2 3 4 5 6 7 8 

Exact area (%) 100 64 100 100 100 100 100 100 
Detected area 86 68 96 100 84 95 89 104 

 
Next, a GA has been applied to the discrete-continuous optimization problem 

(second formulation). In a discrete-continuous optimization problem, as described 
above, the vector of variables is presented as a set of  L couples 
x x x x x xL L

1
1

2
1

1
2

2
2

1 2, , , ,..., ,  where  L is the assumed maximum number of dam  
aged elements. In each couple x j

1 is a number of a damaged element describing the 
location of damage (a discrete variable) and x j

2  was accepted as a number be-
tween 1 and  128  describing the extent of  damage occurring at a corresponding  j-
th location (a continuous but discretized variable). Such approach leads to a con-
siderably smaller number of optimization variables, so the number of possible 
damage locations can be easily increased, and this is the most important benefit of 
this approach (see Ravaii et al., 1998b). 

To demonstrate the potential of this approach, this method has been applied to 
damage detection in the frame for the mild type of damage which results in small 
changes in natural frequencies. The number of possible damage points was as-
sumed to be first 15 and, in the second attempt, 31 and, accordingly, the upper 
bounds of the variables x j

1  were taken as 16 and 32, respectively. The lower 
bounds of these variables were taken as 1. The lower and upper bounds of cross-
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sectional areas, x j
2 , were taken as 1 and 128 respectively. The assumed maximum 

number of damaged elements, L, was assumed to be one, two and three in three 
successive damage detection trials. In all cases the damage was successfully de-
tected, the results are shown in Tables 5 and 6. 

 

 

Table 5. Damage detection  using GA (15 possible locations) 

 Damage location and extent 

Element No. 1 2 3 4 5 6 7-15 

Exact area (%) 100 64 100 100 100 100 100 

L=1 100 67 100 100 100 100 100 

L=2 100 67 100 100 100 100 100 

Assumed max. 
number of dam-
age locations (L) 

L=3 100 64 98 100 103 100 100 

 
 

Table 6.  Damage detection using GA (31 possible damage locations) 

 Damage location and extent 

Element No. 1 2 3 4-8 9 10 11 12-14 15 16-31 

Exact area (%) 100 64 100 100 100 100 100 100 100 100 

L=1 100 67 100 100 100 100 100 100 100 100 

L=2 58 100 100 100 103 100 100 100 100 100 

Assumed
max. no.
of dam-
age loc. 

(L) L=3 63 100 100 100 100 100 104 100 97 100 
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4 The Use of Permutation GA for the Development of        
Uniform Designs of Experiments 

4.1 Introduction 

Response surface modeling (see Myers and Montgomery, 1976), also referred to 
as metamodelling, is a method for approximating system’s responses using func-
tion values at certain points in the design variable space. It is often used in 
design optimization for two main reasons: (i) to minimize the number of 
response evaluations, and (ii) to reduce the effect of numerical noise. 

The choice of location of the evaluation points or plan points is important in 
getting a good approximation of the response, especially when evaluations are 
expensive.  The methodologies used for formulating the plan points are collectively 
known as Design of Experiments (DOE). The most popular methods described by 
Myers and Montgomery (1976) and Box and Draper (1987) are mostly based upon 
the features of the mathematical model of the process, e.g. polynomial type. An-
other method is the Latin Hypercube sampling method (LH), proposed by McKay 
et al. (1979) and Iman and Conover (1980), which is independent of the mathe-
matical model of a problem.  

The LH DOE is structured so that each variable is divided into P levels. For 
each level, there is only one point (i.e. experiment). Once the DoE for N variables 
and P levels is formulated, re-calculation of the DOE is not required. Figure 10 
shows the DoE for N=3 and P=4. The matrix is scaled to fit any range of the design 
variables. Therefore a LH DOE for a problem with N=3 and P=4 is generally de-
termined by this matrix.  

 

 
 
 
 
 
 
 
 
 

Figure 10. LH DoE for N=3 and P=4 
 
Two LH methods are the random sampling LH method (RLH) and the optimal 

Latin Hypercube designs (OLH). RLH and OLH differ by how the points in the 
DOE are distributed. The RLH method uses random sampling to get each point in 
the DOE, whereas the OLH methods use more structured approaches with the aim 

Point 1x
 

2x
 

3x  

1 1 1 4 

2 2 3 1 

3 4 4 2 
4 3 2 3 



www.manaraa.com

152 V.V. Toropov, L.F. Alvarez and O.M. Querin

of optimizing the uniformity of the distribution of the points. The generation of the 
OLH DOE by enumeration is infeasible due to a very large number of possible 
combinations and therefore solving this minimization problem requires a more 
advanced optimization technique to search the design space.  

4.2 Optimal Latin hypercube design of experiments 

Several methods have been proposed to generate OLH using criteria such as 
maximizing entropy (Shewry and Wynn, 1987), integrated mean-squared error 
(Sacks et al., 1989), and the maximization of the minimum distance between 
points (Johnson et al., 1990). Jin et al. (2003) introduce an enhanced stochastic 
evolutionary algorithm for formulating OLH. Audze and Eglais (1977) proposed 
a method (abbreviated here as AELH) that uses the potential energy of the points 
in the DOE to generate a uniform distribution of points. The AELH objective 
function is used in this section. 

Audze-Eglais objective function 
The Audze-Eglais method is based on the following physical analogy: a system 
consisting of points of unit mass exert repulsive forces on each other so that the 
system has a certain amount of potential energy. When the points are released 
from an initial state, they move. They will reach equilibrium when the potential 
energy of the repulsive forces between the masses is at a minimum. If the magni-
tude of the repulsive forces is inversely proportional to the distance squared 
between the points then minimizing the function 
 

min1
1 1 2 =� �

� ��

P

p

P

pq pqL
                                      (6) 

 
will produce a system of points distributed as uniformly as possible. Here U  is 
the potential energy and Lpq  is the distance between the points p and q (p � q). 
For two design variables (N=2) and three points (P=3) the design of experiments 
shown in Figure 11 is one possible solution to the OLH DOE. The quality of the 
solution is calculated using the objective function in (6).  
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Figure 11. DOE for N=2 and P=3 
 
Various DOE combinations can be evaluated and the DOE that minimizes the 

objective function is the OLH DOE. As the problem is discrete, it is ideally suited 
to the use of discrete optimization techniques such as genetic algorithms. 

Encoding for use in a genetic algorithm 
Optimization requires the design variables of the problem to be encoded. The 
design variables for this problem are the points of the DOE, so encoding of these 
points into a form understood by the optimizer is required.  

The approach used here encodes the co-ordinates of each point. The first P de-
sign variables being the x1 co-ordinates, the next P design variables being the x2 co-
ordinates etc. up to N variables. So the encoding or ‘permuation’ of Figure 11, i.e. 
(1,3) (2,1) (3,2) becomes 

 
1 2 3 3 1 2

x1 x2  
The use of a standard binary genetic algorithm requires the encoding to be binary, 
e.g. 
 

1 2 3 3 1 2

01 10 11 11 01 10

x1 x2

 
 
if a standard genetic operator is applied, such as a mutation to the first point, this 
becomes: 
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11 10 11 11 01 10 . 
 

It can be seen that the mutation results in a contravention of the LH rule of one 
point in each level, therefore penalization of the solution is required to guide the 
binary GA towards feasible designs. A penalization approach is highly undesirable 
for a GA and is very inefficient (Bates et al. 2004). One approach to ensure that no 
members of a population need to be penalized is to use a permutation GA 
(permGA), see Michalewicz (1992). This approach has been introduced by Bates et 
al. (2004) and Toropov et al. (2007) and is described here together with some fur-
ther recent developments and extensions. This section is split into three sub-
sections corresponding to the following developments:  

; A method using a permutation genetic algorithm (Michalewicz, 1992) for 
generating a standard OLH (permGA) is presented and is adapted from 
Bates  et al. (2004). 

; This is then extended to allow for existing fixed points to be incorporated 
into the OLH. 

; A strategy is described for the treatment of problems where different design 
variables are associated with different numbers of levels which is not cov-
ered by the standard definition of a Latin hypercube design. 

 

4.3 Optimal Latin Hypercube Generation Using a Permutation Genetic 
Algorithm 

The requirement of one point in each level for OLH is similar to the travelling 
salesman problem (TSP). The only difference between the TSP and the 
formulation of the LH is that in the LH problem the ‘salesman’ doesn’t return to 
the starting point. An extensive overview of many approaches to solving the TSP 
problem is given by Michalewicz (1992). One method is to use a GA to find the 
optimal ‘permutation’ of cities where the term permutation, is “the 
rearrangement of existent elements, or the process of changing the lineal order of 
an ordered set of objects” (Merriam-Webster online dictionary). 

Using permGA the encoding is done with integer values instead of binary 
numbers. Furthermore, the mutation and crossover operators are modelled such 
that the rule of one point in each level for the LH is never contravened. This means 
that the optimization problem is unconstrained and no penalty factor is required. 
Therefore, using a method such as permGA is more efficient due to the fact that it 
does not have to deal with infeasible solutions.   
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Encoding 
Using the permGA the encoding requires no conversion so that the string repre-
senting the DOE in Figure 12 is 1 2 3 3 1 2. The formulation here is that the 
first P  numbers are a random sequence of numbers between 1 and P, and the 
next P numbers are also a random sequence of numbers between 1 and P. This is 
repeated up to N times. There are no repetitions of numbers in each sequence 
therefore the rule of one point in each level is not contravened. Below is an ex-
ample of using the genetic operators with a permutation encoding. 
 
1) Mutation - two numbers are selected and exchanged, e.g. 2nd and 5th  

 
[4 1 5 2 3] D  [4 3 5 2 1] 

 
2) Crossover can be done in a variety of ways. It is applied to each sequence of 

P numbers for the N variables. Three crossover methods have been imple-
mented in this work: a ‘simple crossover’ method, the ‘cycle crossover’ 
method by Oliver et al. (1987), and an ‘inversion’ method.  

Simple crossover  
A crossover point is selected (2 in this example), the permutation is copied from 
the first parent until the crossover point, then, starting from the beginning, the 
other parent is scanned and if the number is not yet in the child, it is added.  
 

Parent 1 = [4 1 3 5 2] D  Child 1 = [4 1 5 2 3] 
+   

Parent 2 = [5 2 1 4 3] D  Child 2 = [5 2 4 1 3] 

Cycle crossover 
In this method, each value and its position comes from one of the parents. The 
method preserves the absolute position of the elements in the parent sequence. 
An example of the implementation of cycle crossover is as follows (adapted 
from Michalewicz, 1992). 
 

Parent 1 = [1 3 9 7 5 4 6 2 8] 
+ 

Parent 2 = [4 6 2 1 7 8 9 3 5] 
 
produces child 1 by taking the first value from the first parent: 
 

Child 1 = [1 * * * * * * * *]. 
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The next point is the value below 1 in parent 2, i.e. 4. In parent 1 this value is at 
position ‘6’, thus 
 

Child 1 = [1 * * * * 4 * * *]. 
 
This, in turn, implies a value of 8, as the value from parent 2 below the selected 
value 4. Thus 
 

Child 1 = [1 * * * * 4 * * 8]. 
 
Following this rule, the next values in child 1 are 5 and 7. The selection of 7 re-
quires the selection of 1 in parent 1, which is already used, meaning that a cycle is 
completed 
 

Child 1 = [1 * * 7 5 4 * * 8]. 
 

The remaining values are filled from the other parent: 
 

Child 1 = [1 6 2 7 5 4 9 3 8]. 
 
Similarly,  

Child 2 = [4 3 9 1 7 8 6 2 5]. 

Inversion 

In this method two cut-off points are chosen at random in a parent and the values 
between these points are inverted e.g. for the cut-off points 3 and 7 marked as ‘|’ 
 

Parent 1 = [1 3 9 | 7 5 4 6 | 2 8] 
E  

Child 1 = [1 3 9 | 6 4 5 7 | 2 8] 
. 

Other crossover methods include ‘partially mapped crossover’ by Goldberg 
and Lingle (1985) and ‘order crossover’ by Davis  (1985), also see Michalewicz 
(1992) for further details. 

In addition to using the objective function (6) to assess the fitness of a solu-
tion it is useful to find for each sample point in a DOE the location of its nearest 
neighbour by calculating the minimum Euclidian distance out of all DOE points. 
Plotting the distribution of the “minimum distances”, a smaller standard devia-
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tion demonstrates improved uniformity and a higher mean indicates improved 
space filling propertiy.  

Figure 12 compares a random LH to an OLH for 2 design variables and 120 
points generated using permGA. 
 

(a) Points distribution (a) Minimum distance plot 

(b) Points distribution (b) Minimum distance plot 
 

Figure 12. Comparison of  (a) random LH  to (b) OLH for 2 design variables 
and 120 points generated using permGA 

4.4 Optimal Latin hypercube design with existing fixed points 

One of the shortcomings of LH DOEs is that it is not possible to have points at 
all the extremities (corner points) of the design space due to the rule of one point 
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per level. This is often desirable in practical design optimization problems. 
Furthermore, it may be the case that points in the design space are pre-
designated. With this in mind the standard OLH procedure described in Section 
4.2 has been extended to allow existing fixed points to form part of the final 
DOE. This has been implemented by allowing the fixed points to contribute to 
the objective function of the optimization without forming part of the design 
variable set. This enables fixed points to be located anywhere in the design 
domain without affecting the fundamental principle of the designable Latin 
hypercube i.e. one point per level per design variable.  

Figure 13 compares a random LH to an OLH for 2 design variables, 4 fixed 
(corner) points and 120 points generated by the permGA. Similarly, Figure 14 
compares a random LH to a OLH for 2 design variables, 11 fixed (diagonal) 
points and 120 points generated by the permGA. 

4.5 Optimal Latin hypercube design with different numbers of levels 

Another shortcoming of LH DOEs is that it is not possible to have different 
numbers of levels in different design variables. In many practical problems 
design variables are defined on discrete sets which do not necessarily contain the 
same number of possible values for each of the individual variables. In such a 
case, a conventional Latin hypercube is not applicable as some levels in some of 
the design variables would have more than one point. With this in mind the OLH 
procedure described in Section 1 has been extended to allow individual levels to 
contain more than one point while preserving the uniformity property according 
to the Audze-Eglais optimality criterion. 

In order to do this within the adopted framework, a set of possible levels in 
each of design variables has to be defined. The total number of such possibilities 
has to be the same for each of the design variables but some of the levels can be 
repeated more than once. For example, for a two design variable problem with 9 
points, 9 levels in the first variable and 3 levels in the second, the sets are: {1, 2, 
3, 4, 5, 6, 7 8, 9} in the variable one and {1, 1, 1, 2, 2, 2, 3, 3, 3} in the variable 
two. Then the procedure described in Section 4.3 can be directly applied for such 
a problem. Figure 15 shows a generalised OLH design obtained by a permGA.  

Another example is a generalised OLH with two design variables, 30 
points, 30 levels in the first variable and 20 levels in the second. The set of 
levels for the first design variable includes integers from 1 to 30, and for second 
it was chosen as {1, 2, 3, 4, 5, 6, 7 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
2, 4, 6, 8, 10,
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(a) Points distribution (a) Minimum distance plot 

 
(b) Points distribution (b) Minimum distance plot 

 
Figure 13. Comparison of  (a) random LH to (b) generalised OLH for 2 design 

variables, 4 fixed (corner) points and 120 points generated by the permGA 
 

12, 14, 16, 18, 20}. Figure 16 shows a corresponding generalised OLH design 
obtained by a permGA. These example indicate how a sets of levels is estab-
lished for each of the design variables: the full set of available levels is repeated 
as many times as possible not exceeding the given number of DOE points, and 
then the remaining levels are chosen by picking up a necessary number of levels 
(the total number of all levels is to remain equal to the number of DOE points) 
out of the available set covering it as uniformly as possible.  
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(a) points distribution (a) Minimum distance plot 

(b) points distribution (b) Minimum distance plot 
 

Figure 14. Comparison of  (a) random LH to (b) generalised OLH for 2 design 
variables, 11 fixed (diagonal) points and 120 points generated by the permGA 
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Points distribution Minimum distance plot 

 
Figure 15. Generalised OLH for 2 design variables, 9 levels in the first and 3 

levels in the second design variable 
 

 

Points distribution Minimum distance plot 
 

Figure 16. Generalised OLH for 2 design variables, 30 levels in the first and 20 
levels in the second design variable 

4.6 Conclusions 

A method has been developed for formulating the OLH DOE using the Audze-
Eglais objective function. The formulation of this DOE is shown to be non-
trivial. It has been shown, that the formulation of OLHs is ideally suited to using 
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permutation GAs since the problem uses discrete design variables and the LH 
requires no repetition of values in a chromosome. 

One of the shortcomings of LH DOEs is that it is not possible to have points 
at all the extremities (corner points) of the design space due to the rule of one 
point per level. Furthermore, it may be the case that points in the design space 
are pre-designated. The permutation GA developed has been extended to ac-
count for such situations. Next, a strategy is developed for the treatment of 
problems where different design variables are associated with different numbers 
of levels. This addresses a limitation of the standard convention of a Latin hy-
percube design whilst preserving the uniformity property.  

Overall, it can be concluded, that the permutation GA is an effective tool for 
developing OLH DOE and that the extensions described considerably increase 
the functionality of the tool.  

5 Use of Genetic Programming Methodology for Metamodel 
Building 

Selection of the structure of an analytical metamodel, i.e. an approximation func-
tion, is a problem of empirical model building (Box and Draper, 1987). Selection 
of individual regression components in a model results in solving a combinato-
rial optimization problem. Even if the bank of all regressors is established 
(which is a difficult problem on its own), the search through all possible combi-
nations would result in prohibitive computational effort. Toropov and Alvarez 
(1998) attempted to develop and use a genetic programming (GP) methodology 
(Koza, 1992, Kinnear, 1994) for the creation of an approximation function struc-
ture of the best possible quality, and use it within a mid-range (or global) 
approximation technique.  

GP is a branch of genetic algorithms (GA). While a GA uses a string of 
numbers to represent the solution, the GP creates a population of computer pro-
grams with a tree structure. In our case of design optimization, a program 
represents an empirical model to be used for approximation of a response func-
tion. A typical program, representing the expression (x1/x2+x3 )2, is shown in 
Figure 17. 

These randomly generated programs are general and hierarchical, varying in 
size and shape. GP's main goal is to solve a problem by searching highly fit 
computer programs in the space of all possible programs that solve the problem. 
This aspect is the key to finding near global solutions by keeping many solutions 
that may potentially be close to minima (local or global). The creation of the 
initial population is a blind random search of the space defined by the problem. 
In contrast to a GA, the output of the GP is a program (i.e. an empirical model 
used for approximation), whereas the output of a GA is a quantity.  
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The programs are composed of elements from a terminal set and a functional 
set, called nodes.  
 

Terminal Set Design variables: x1 , x2 , ..., xN 

Functional Set 
Mathematical operators that generate the 

regression model: 
{ +, *, /, x y, etc. } 

 
The functional set can be subdivided into binary nodes, which take any two 

arguments (like addition), and unary nodes, which take one argument, e.g. a 
square root. All the functions and terminals must be compatible in order to fault-
lessly pass information between each other (closure property).  

The evolution of the programs is performed through the action of the genetic 
operators and the evaluation of the fitness function. 

5.1 Genetic operators 

Model structures evolve through the action of three basic genetic operators: 
reproduction, crossover and mutation.  In the reproduction stage, a strategy must 
be adopted as to which programs should die. In this implementation, trees with 
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fitness below the average are killed. The population is then filled with the sur-
viving trees according to fitness proportionate selection.  

Crossover (Figure 18) combines good information from two trees (parents) 
in order to improve the fitness of the next generation.  The basic algorithm is as 
follows: 

� select two trees from the whole population; 
� within each of these trees, randomly select one node; 
� swap the subtrees under the selected nodes, thus generating two offsprings 

belonging to the new population. 
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* /
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Figure 18.  Crossover 

 



www.manaraa.com

Applications of GA and GP 165

Mutation (Figure 19) protects the model against premature convergence and 
improves the non-local properties of the search.  The following algorithm is 
used: 

� randomly select one node within a tree; 
� replace this node with another one from the same set (a function replaces 

a function and a terminal replaces a terminal) except by itself. 

SQ

-

SQ

SQ

*
- */+{ }

SQ

x1 x1

x2 x2

 

Figure 19.  Mutation 

An additional operator, elite transfer, is used to allow a relatively small num-
ber of the fittest programs, called the elite, to be transferred unchanged to a next 
generation, in order to keep the best solutions found so far. As a result, a new 
population of trees of the same size as the original one is created, but it has a 
higher average fitness value.  

5.2 Fitness function 

When selecting randomly a tree to perform any genetic operation, the so-called 
fitness proportionate method is used here. This method specifies the probability 
of selection on the basis of the fitness of the solution.  

The fitness of a solution shall reflect (i) the quality of approximation of the 
experimental data by a current expression represented by a tree, and (ii) the 
length of the tree in order to obtain more compact expressions. 

In problems of empirical model building, the most obvious choice for the es-
timation of the quality of the model is the sum of squares of the difference 
between the analytical model output (that is being built) and the results of runs 
of the original simulation model (or experimental information) over some chosen 
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design of experiments (DOE). In a dimensionless form this measure of quality of 
the solution can be presented as follows:  
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where G >0 is the parameter characterizing a degree of inequality of the contribu-
tion of the response and the sensitivity data, taken here as 0.5. 

If � �iSQ  is the measure of quality of the solution Si, maxQ  is the maximum 
value of this quantity out of all Nt members of the population, ntpmax is the 
maximum allowed number of tuning parameters, ntpi is the number of tuning 
parameters contained in the solution Si and c is a coefficient penalizing the ex-
cessive length of the expression, the fitness function � �iS1  can be expressed in 
the following form: 

 � � � � � �2
maxmax * iii ntpntpcSQQS ����1     (9) 

The probability that the solution Si will be selected is  
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.              (10) 

Programs with greater fitness values � �iS1  have a greater chance of being 
selected in a subsequent genetic action. Highly fit programs live and reproduce, 
and less fit programs die. 
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The fitness function defined as the sum of squares of the error between 
model output and experimental data has been applied before to the model build-
ing in fluid flow problems (Gray et al., 1996a) and dynamic systems (Gray et al., 
1996b).  Another possible choice is the statistical concept of correlation, which 
determines and quantifies whether a relationship between two data sets exists. 
This definition was used for the identification of industrial processes (McKay et 
al. 1996). 

5.3 Design of experiments 
The choice of the design of experiments can have a large influence on the accu-
racy of the approximation and the cost of constructing the response surface. In 
this work, the approach suggested by Audze and Eglais (1977), see Section 4 for 
details. 

5.4 Model tuning 
The approximation function is characterized not only by its structure (to be 
found by the GP) but also by a set of tuning parameters a to be found by the 
model tuning, i.e. the least squares fitting of the model into the set of values of 
the original response function: 
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The allocation of tuning parameters a to an individual tree (Figure 20) follows 
the basic algebraic rules, see Figure 21. 
 

SQ

+

/

x1 x2

x3

SQ

+

*

a1 /

+

a0

x1 x2

*

a2 x2

 

Figure 20. Allocation of tuning parameters to a tree 
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Figure 21.  Tuning parameter allocation diagram 

Going through the tree downwards, tuning parameters are allocated to a 
subtree depending on the type of the current node and the structure of the subtree 
according to the following algorithm: 

1. Current node is of type Binary
multiplication and division operations only require one tuning parameter, 
e.g.

21121 **
~

*
~

xxaFxxF a
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all other operations require two tuning parameters, e.g. 

221121

221121

*^*~^~
**~~

xaxaFxxF
xaxaFxxF

a
a

all other operations require two tuning parameters, e.g. 
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a
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all other operations require two tuning parameters, e.g. 
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**~~
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a
a

when F~  is a combination of the previous two approaches, tuning 
parameters are only applied to operations different from multiplication 
and division, e.g.  
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2. Current node is of type Unary: ignore. 
3. Current node is of type Variable

one tuning parameter is added, e.g. 

2
11

2
1 *

~~
xaFxF a

4. Insert a free parameter, e.g. 

01111 *
~

*
~

axaaFxaaF
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To identify the parameters of the expression by the nonlinear least squares 
fitting, i.e. to solve the optimization problem (11), a combination of a Genetic 
Algorithm and a nonlinear optimization method by Madsen and Hegelund 
(1991) is used.  

The output of the Genetic Algorithm is then used as the initial guess for the 
subsequent derivative-based optimization. The method by Madsen and Hegelund 
(1991) used here amounts to a variation of the Newton's method in which the 
Hessian matrix is approximated by the secant (quasi-Newton) updating method. 
Once the technique comes sufficiently close to a local solution, it normally con-
verges quite rapidly. To speed up the convergence the algorithm uses the 
adaptive update of the Hessian and, consequently, the algorithm is reduced to 
either a Gauss-Newton or Levenberg-Marquardt method. 

5.5 Applications 

Test example 1.  Rosenbrock's banana-shaped valley function is a classic optimi-
zation problem. The optimum point is inside a long, curved and narrow valley. The 
function is defined as follows: 

 � � � � � �21
22

1221 1100, xxxxxF ���2�  

Figure 22 shows the contour plot and the surface plot of Rosenbrock's function.  
 

Figure 22. Rosenbrock's function: contour plot (left) and surface plot (right) 

With a population of 200 trees, the approximation of Rosenbrock's function 
has been tested with and without the use of sensitivity information. When no 
sensitivity information has been used, GP was run with a DOE of 5 and 10 
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points.  In the case of 5 points, a solution with good fitness has evolved, it had 
almost exact match at the plan points but very poor quality everywhere else. The 
reason is that insufficient information was passed to GP to represent an accurate 
solution, and the solution suffered from overfitting. When approximated with 10 
plan points, the Rosenbrock's function emerged as the solution of the problem. 

When the first order derivatives, were included in the approximation of Rosen-
brock's function with a DOE of 5 points, the algorithm exactly matched the original 
expression. This suggests that, if available, derivatives provide with more informa-
tion thus improving the convergence characteristics.  If the derivatives are not 
available, the inclusion of more points in the plan of experiments is necessary.  

Test example 2.  Generally, a large number of DOE points is desirable in order to 
provide more information to the genetic programming algorithm. To illustrate these 
aspects, the following expression has been tested (see Figure 23):  

 )4)(sin30( 211
xexx ���  

Two tests were performed with data generated with a DOE of 20 and 10 points 
(Figures 23 and 24 respectively). The sine and exponential functions were included 
in the functional set. Results show that the higher is the number of experiments, the 
better is the approximation.  

  

Figure 23. The original function and  
the approximation with 20 DOE 

Figure 24. Approximation with  
10 point DOE 
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6 Use of Genetic Programming for Recognition of Damage in 
Steel Structures 

In this section the output error method of system identification has been again used 
to assess the presence and extent of damage in steel structures.  In the solution of 
the optimization problem the objective function and, alternatively, its individual 
terms corresponding to individual frequencies, have been approximated by analyti-
cal expressions using the Genetic Programming methodology. Damage location in 
a typical steel portal frame is found by minimization of the difference between the 
measured and analysed structural response, namely, frequencies of vibration (5). 

In the formulation of the optimization problem (5) the number of optimization 
variables N = 3, the number of used frequencies M = 4, and x1, x2, x3 describe per-
centage of reduction of cross-sectional area in three locations at welded joints. The 
description of actual damage corresponds to the following set of optimization vari-
ables: x1 = 100, x2 = 54, x3 = 100,  i.e. damage in second location. 

The approximation procedure using GP (see Section 5) has been carried out 
following two different approaches (Toropov et al. 1999 a, b): approximation of 
the objective function in the original optimization problem (5), and approximation 
of the individual frequencies corresponding to the first four modes of vibration. In 
the second approach, individual frequencies )(xa

i> , i = 1, …, M in (5) are ap-
proximated by simpler expressions )(~ xa

i>  and the overall objective function (to 
be minimized) � �xF~  can be assembled similarly to (5) using the approximated 
frequencies: 
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1
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=
�

�� �
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i

m
ii

i
wF >>> xx .     (12) 

 
The advantage of the formulation (12) is that the approximations )(~ xa

i>  can be 
built once and then used many times for damage detection in a new structure of the 
same geometry using new sets of the experimental data m

i> , i = 1, …, M. 
For the 3-dimensional graphical representation, the approximation functions  

have been plotted fixing one of the three optimization variables, corresponding to 
possible damage locations, i.e. x1 = 100. Figure 26a shows the original function in 
(5). Figures 26b and 26c show the approximation functions obtained using the 
values of the function in (5) at P = 20 points of the optimization variable space. 
The following input parameters have been used: 

� designs of experiments: 20 and 50 points 
� population size: Nt=100 
� proportion of the elite: Pe=0.2 
� probability of mutation: Pm=0.001 
� functional set:      
� binary functions   +,  *,  /,  ^ 
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� unary functions    (...)2,  H(...),  -(...) 
� terminal set: variables  x1 , x2, x3. 
 

(a) Original function (b) Approximation  
(50 points) 

(c) Approximation 
 (20 points) 

Figure 25. Approximation of the overall expression, x1 = 100 

The solution of the simplified optimization problem (5) has been obtained in 
two steps of approximation building. In the first step the following values of lower 
and upper bounds have been selected: Aj = 10 and Bj =110,  j =1, 2, 3. In the sec-
ond step the size of the search domain of the optimization variable space, defined 
by Aj  and Bj, has been reduced by half and the new approximations have been 
constructed. When the approximation have been built using 50 points, the follow-
ing solution has been obtained: x1 = 110.0, x2 = 45.4, x3 = 110.0. Using 20 points, 
the following solution has been obtained: x1 = 74.0, x2 = 50.7, x3 = 110.0. 

When the approximation functions were obtained as a combination of ap-
proximations for the individual frequencies, as defined by the expression (12) and 
illustrated by Figure 26, the following solutions have been obtained in one step: x1 
= 92.6, x2 = 50.1, x3 = 110.0 using 50 points, and x1 = 80.0, x2 = 51.1, x3 = 89.6 
using 20 points. 
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Approximation (50 points) 

 
Approximation (20 points) 

Figure 26. Expressions obtained using approximations of individual frequencies,  
x1 = 100 

 
7 Multicriteria Optimization of the Manufacturing Process 

for Roman Cement using Genetic Programming 
 
In the 19th century, Roman cement was used throughout Europe for the produc-
tion of stucco finishes in architectural decoration.  However, problems with the 
supply of raw materials and developments in Portland cements motivated the 
decline in its use and the corresponding loss of craft techniques.  

The Charter of Venice (1964) states that the process of restoration should be 
based on respect for the original material.  This is in contrast with the use of the 
current modern cement products, finishing layers and paints that do not match 
the original physical and mechanical properties of the stuccoes. 

Consequently, for the re-introduction of Roman cement, there is a need to 
find a suitable range of similar materials among the re-emerging natural hydrau-
lic binders, and to appreciate the technical knowledge and understanding of the 
original cement-makers. Experimental results on the calcination of cement-
stones from the Harwich and Whitby group of cements show that both setting 
time and strength development are functions of source and calcination tempera-
ture. 

In this application, a single source of cement-stone was identified for ex-
perimentation within an optimization programme to relate mechanical and 
mineralogical characteristics to calcination conditions. Genetic programming has 
been used to illustrate the general trends of minerals and the strength develop-
ment of the cement.  The data will be useful for the selection of hydraulic 
binders and as an element in the re-introduction of Roman cement to the Euro-
pean market. 
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Experimental work. The cement-stones used in this research were collected 
from the Yorkshire coast at Whitby Long Bight. The calcination process is not 
well documented in the historic literature. For the current research, the Audze-
Eglais 12 point DOE has been used. Each cement is referred to using the nomen-
clature of temperature and residence time, e.g. 917/276 taken as design variables 
x1 and x2 respectively, see Figure 27.  An electric kiln was used and no attempt 
made to either circulate air through it or to seal it during calcination.   

 

Figure 27. Design of experiments 

Results presented here are adopted from Alvarez et al. (2000). At each com-
bination of time and temperature given by the plan of experiments, strength at 
one week (MPa) and rate of strength enhancement between 8 and 17 weeks 
(MPa/week) have been obtained by a series of laboratory experiments. Using 
GP, these response quantities have been obtained as analytical expressions, their 
contour plots are shown in Figure 28.  

The multicriteria optimization problem is stated as to maximize the early 
age strength and the rate of strength enhancement simultaneously. The con-
straints have been established following different technical aspects.  Although 
the green discolouration of some pastes is associated with the presence of a min-
eral called calcium sulfite, its concentration is too low to quantify. Consequently 
this constraint has been represented by a maximum silica content (determined by 
X-Ray Difraction using boehmite as an internal standard) expressed as relative 
intensity  
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Figure 28. Strength development for Roman cement

50.  This correlates with pastes which do not turn green. Another important 
quantity, the weight loss on calcination (LOC) of 28-30% has been selected to 
represent the confused historic statements of "calcine sufficient to decarbonate", 
"just enough to minimize the weight" and "underfire to economize on 
grounding" found in the literature, although not well documented. The analytical 
approximations for these two constraints have also been obtained using the GP 
methodology. 

The formulation of the optimization problem is as follows: 

Strength at one week 
Rate of strength enhancement 

max
max

Subject to:   Silica    50 
28%   LOC   30% 

To find the Pareto-optimal set, first the objective and constraint functions 
have been plotted to identify the feasible solution domains.  Second, a series of 
optimization runs has been performed by the SQP algorithm at regular intervals.  
The final solution is represented in Figure 29.  The shaded area defines the 
feasible solution domain, the curves indicate constant levels of strength at one 
week, the rate of strength enhancement and the constraint functions at their 
limiting levels.  The circled points define the discrete approximation of the 
Pareto-optimal set. 

The analysis of the optimization results (Figure 29) reveals that there are 
three main zones of study according to the obtained Pareto-optimal set: the 
upper, middle and lower zones.   
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Figure 29. Results of optimization 

The lower zone has an essentially constant time band.  As temperature in-
creases, the strength at one week decreases but the rate of strength enhancement 
increases.  The upper zone has a narrower temperature band than the lower zone.  
Here as the temperature reduces, the times increases. As this progression is fol-
lowed, the same trend as before is noted in terms of the strength at 1 week and 
the rate of strength enhacement. The middle zone is located in a very narrow 
area of the feasible domain that suggests uncertainty about the validity of these 
solutions. 

It is possible to identify three points which yield similarly good performance 
but obtained under different calcination conditions as described in Table 7. It 
appears that as the calcination temperature is raised, then the residence time is 
reduced.  The final selection of any these calcination conditions will be heavily 
influenced by energy and hence financial and ecological considerations.   

 
 
 



www.manaraa.com

178 V.V. Toropov, L.F. Alvarez and O.M. Querin

Table 7.  Optimal solutions 

 Strength at  
1 week 
(MPa) 

Rate of strength
enhancement 
(MPa/week) 

Temperature (�C) Time  
(min) 

1 4.4 1.0 957 120 
2 4.3 1.0 920 205 
3 4.2 1.1 900 260 
 

8 Empirical Modelling of Shear Strength of Reinforced  
 Deep Beams by Genetic Programming (Ashour et al. 2003) 

8.1 Introduction 

Reinforced concrete (RC) deep beams are characterised as being relatively short 
and deep, having a thickness that is small relative to their span or depth, and 
being primarily loaded in their own plane. They are sometimes used for load 
distribution, for example as transfer girders, pile caps, folded plates and founda-
tion walls. The transition from reinforced concrete shallow beam behaviour to 
that of deep beams is imprecise. For example, while the ACI code (ACI, 1999), 
CEB-FIP model code (CEB-FIP, 1993) and CIRIA Guide 2 (CIRIA, 1977) use 
the span/depth ratio limit to define RC deep beams, the Canadian code (CSA, 
1994) employs the concept of shear span/depth ratio. ACI defines beams with 
clear span to effective depth ratios less than 5 as deep beams, whereas CEB-FIP 
model code treats simply supported and continuous beams of span/depth ratios 
less than 2 and 2.5, respectively, as deep beams. 

Several possible modes of failure of deep beams have been identified from 
physical tests but due to their geometrical dimensions shear strength appears to 
control their design. Despite of the large amount of research carried out over the 
last century, there is no agreed rational procedure to predict the shear strength of 
reinforced concrete deep beams (Kong, 1990; Regan, 1993). This is mainly 
because of the very complex mechanism associated with the shear failure of 
reinforced concrete beams. 

The design of reinforced concrete deep beams has not yet been covered by 
the British code of practice BS8110 (BSI, 1997) that explicitly states, "for the 
design of deep beams, reference should be made to specialist literature". Com-
parisons between test results and predictions from other codes, such as ACI and 
CIRIA Guide 2, show poor agreement (Tan et al., 1997; Teng et al., 1998). 

In this section, the genetic programming (GP) method is used to build an 
empirical model to estimate the shear strength of reinforced concrete deep beams 
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subjected to two point loads (Ashour et al. 2003). The GP model will directly 
evolve from a set of experimental results available in the literature. A parametric 
study is conducted to examine the validity of the GP model predictions. 

8.2 Parameters affecting shear strength of deep beams 

Figure 31 shows the geometrical dimensions and reinforcement of a typical 
reinforced concrete deep beam tested under two point loads. The main parame-
ters influencing the shear strength of reinforced concrete deep beams are the 
concrete compressive strength, main longitudinal top and bottom steel rein-
forcement, horizontal and vertical web steel reinforcement, beam width and 
depth, shear-span and beam-span (Ashour, 2000; Kong et al., 1970; Smith and 
Vantsiotis, 1982). Those parameters can be expressed in normalised form as 
follows: 
; Normalised shear strength I� cfhbP� , where P = shear failure load, b 

= beam width, h = overall beam depth, fc I = concrete compressive strength; 
; Shear span to depth ratio hax /1 � ; 
; Beam span to depth ratio hLx /2 � ; 

; Smeared vertical web reinforcement ratio I� cvyvsv fsbfAx3 , where Asv 
= area of vertical web reinforcement, sv = horizontal spacing of vertical web 
reinforcement, fyv = yield stress of vertical web reinforcement; 

; Smeared horizontal web reinforcement ratio I� chyhsh fsbfAx4 , where 
Ash = area of horizontal web reinforcement, sh = vertical spacing of horizon-
tal web reinforcement, fyh =  yield stress of horizontal web reinforcement; 

; Main longitudinal bottom reinforcement ratio I� cybsb fhbfAx5 , where 
Asb = area of main longitudinal bottom reinforcement, fyb = yield stress of 
main longitudinal bottom reinforcement; 

; Main longitudinal top reinforcement ratio I� cytst fhbfAx6 , where Ast = 
area of main longitudinal top reinforcement, fyt = yield stress of main longi-
tudinal top reinforcement. 
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Figure 30. Geometrical dimensions of a reinforced concrete deep beam 

Following normal practice established in the majority of papers published on 
this topic (Mau and Hsu, 1987; Wang et al., 1993), the transformation of the 
physical variables into dimensionless parameters allowed the reduction of the 
initial set of 16 variables to only 6 dimensionless variables. A dimensionless 
format is typically used in the codes of practice and can be easily understood by 
design engineers. In addition, the dimensionless transformation of the initial 
physical variables has not been done arbitrarily but follows design expertise of 
structural engineers, i.e. x1=a/h could have been defined as x1=a/L but this 
would not make sense to a design engineer; x3 and x4 define the smeared inten-
sity of vertical and horizontal web reinforcement. In applications where the 
number of variables is small, the response function produced by GP could be 
directly related to the physical variables, as suggested by Keijzer and Babovic 
(1999, 2000) who developed a dimensionally aware GP. 

The shear span to depth ratio x1 is one of the main parameters influencing 
shear behaviour (Ashour, 2000; Manuel et al., 1971; Paiva and Siess, 1965; 
Smith and Vantsiotis, 1982). A marked increase in the shear strength occurs in 
reinforced concrete beams with reducing the shear span to depth ratio. The type 
of web reinforcement affects the shear strength of reinforced concrete deep 
beams (Kong et al., 1970; Rogowsky et al., 1986). Most codes of practice pro-
vide formulae to calculate the shear strength in which the contribution of the 
horizontal web reinforcement is higher than that of the vertical web reinforce-
ment. Leonhardt and Walther (1970) suggested that the shear strength of deep 
beams cannot be improved by the addition of web reinforcement. However, 
Kong et al. (1970) suggested that improvement is possible to a limited extend. 
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Rogowsky et al. (1986) concluded that horizontal web reinforcement had no 
effect on the shear strength while the vertical web reinforcement had a signifi-
cant influence. As explained above, there is strong disagreement on the influence 
of web reinforcement on the shear strength of deep beams, in particular the rela-
tive effectiveness of vertical and horizontal reinforcement. Although most test 
results of reinforced concrete deep beams suggest that the span to depth ratio x2 
has very little influence on shear strength (Mau and Hsu, 1987; Subedi, 1988; 
Wang et al., 1993), most codes of practice use this parameter to define deep 
beams. In this section, the span to depth ratio will be represented in the GP 
model as one variable and its effect on the shear strength will be studied. Using 
the current technique, it will be possible to study the effect of all parameters on 
the ultimate shear strength of deep beams using all test results available in the 
literature at the same time; this may eliminate the inconsistency and conflicting 
conclusions drawn by different researchers. 

 
8.3 Empirical model obtained by GP 

There is a large number of test results of reinforced concrete deep beams re-
ferred to in the literature. Test results of 141 deep beams reported in (Kong et 
al., 1970; Kong et al., 1972; Manuel et al., 1971; Paiva and Siess, 1965; Rama-
krishnan and Ananthanarayana, 1968; Rogowsky et al., 1986; Smith and 
Vantsiotis, 1982; Subedi et al., 1986; Suter and Manuel, 1971; Tan and Lu, 
1999) are used here to create the GP response. The training data set covers a 
wide range of each parameter as given in Table 8. All selected beams were tested 
under two point loads; other load arrangements have been excluded. 

 

Table 8. Range of normalised function and parameters of the training data set 

 Minimum Maximum 
x1 0.28 2.0 
x2 0.9 4.14 
x3 0.0 0.32 
x4 0.0 0.21 
x5 0.023 0.445 
x6 0.0 0.128 

�(x) 0.029 0.308 
 
The mathematical operators addition, multiplication, division, square and ne-

gation and a population size of 500 individuals were selected in the initial runs. 
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For simplicity of the GP-evolved expression, the power of variables was re-
stricted to positive integer values. 

From the beginning, it was observed that the variable x2 (beam span to depth 
ratio) had small influence on the shear strength � and, on one occasion, GP did 
not include this variable in the evolved expression. 

To confirm this observation, several GP runs were undertaken with the fit-
ness function given in equation (7) replaced by the statistical concept of 
correlation (McKay et al., 1996) as defined in equation (13) below: 
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where, for a given tree, F~ is the mean of GP predicted function values over the P 
points in the experimental data, and, similarly, F  is the mean of the experimen-
tal shear strength values over all experimental data. The fitness function given in 
(13) determines and quantifies the correlation between the independent variables 
(x1, x2, x3, x4, x5, x6) and the dependant variable �. The closer the fitness value to 
1, the stronger the correlation. In all GP runs, the fitness value Q(Si) in (13) was 
close to 1 when variable x2 was not included in the final GP expression. The 
small relevance of x2 on the shear strength has also been experimentally ob-
served by other researchers (Ashour, 2000; Kong et al., 1972; Subedi, 1988; Tan 
et al., 1997; Wang et al., 1993). 

In the next stage, only variables x1, x3, x4, x5 and x6 were used. Several runs 
were performed and the solutions analysed on the basis of the simplest generated 
model that conformed as closely as possible to the engineering understanding of 
the failure mechanism. When the population size was increased to 1000 indi-
viduals and the mutation rate set to 0.001, the following model emerged: 

� = x5 * (4.31 + 0.15 * x1
2 + 12.11 * x1 * x5 + 3.34 * x1 * x6 + 0.66 * x3 + 

0.47 * x4 + 23.27 * x5
2 - 16.97 * x1 * x5

2 - 18.22 * x5 - 2.70 * x1) 
(14)

Solutions with better fitness than (14) were produced, but they were rejected 
because of their excessive length. Simplicity is a requirement and, as the complex-
ity of the model increases, its ability to generalise can be affected by the risk of 
overfitting the data. 

The structure of expression (14) was found acceptable, but the coefficients 
needed to be adjusted in order to satisfy some constraints derived from the engi-
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neering knowledge of the problem, such as that the shear strength should be posi-
tive for the range of shear span to depth ratio studied. A Sequential Quadratic 
Programming (SQP) algorithm (Madsen and Tingleff, 1990) was applied to im-
prove  the coefficients of equation (15) resulting in the following expression: 

� = x5 * (3.50 + 0.20 * x1
2 + 3.3 * x1 * x5 + 3.37 * x1 * x6 + 0.63 * x3 + 0.71 

* x4 + 9.8 * x5
2 – 1.66 * x1 * x5

2 – 10.67 * x5 – 1.76 * x1) 
(15)

Further studies with GP and manual postprocessing to adjust the coefficients 
produced by the SQP algorithm have suggested a simplified final expression as 
follows: 

 � = A  *  x5
2  + B  *  x5  +  C 

where A  =  -4.56  +  1.68  *  x1 

 B  =  2.45  +  0.1  *  x1
2  -  1.16  *  x1  +  3.12  *  x6 

 C  =  0.3  *  x3  +  0.3  *  x4 

(16)

It appeared that the variables x1 (shear span to depth ratio) and x5 (main longi-
tudinal bottom reinforcement ratio) were the most significant parameters. 
Alternative expressions with an additional term x1*x6*x5 were found, but no rela-
tionship between these variables is available as a criterion for the choice between 
different acceptable expressions. In the literature there is no consensus about the 
effect of the main longitudinal top reinforcement (represented by x6 in the above 
expression) on the shear strength; this requires further investigation and, following 
that, better understanding of its effect can be reflected in the GP prediction. The 
web reinforcement contribution (represented by x3 and x4) as given by expression 
(16) is very small. 

Expression (16) gives a root mean square (RMS) error over the training data of 
0.033. The average ratio between the predicted and experimental shear strength is 
1.008, and the standard deviation is 0.23. Figure 31 shows a comparison between 
the experimental and predicted shear strengths for the training data. To validate the 
model, 15 additional experimental results, which were not exposed to GP in the 
training process, were used. The average and standard deviation of the ratio be-
tween the predicted and experimental shear strengths are 1.11 and 0.21, 
respectively. The RMS error over the validation data is 0.035. 
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Figure 32. Comparison of experimental and predicted shear strengths 

8.4 Conclusions 

An empirical model to predict the shear strength of reinforced concrete deep 
beams has been obtained by GP. Experimental results are used to build and vali-
date the model. Good agreement between the model predictions and experiments 
has been achieved. As more experimental results and knowledge of the shear 
behaviour of deep beams become available, the GP prediction could be im-
proved. 

The GP model predicts the following behaviour between the shear strength and 
the influencing parameters: 
; The shear span to depth and main longitudinal bottom reinforcement ratios 

have the most significant effect on the shear strength of reinforced concrete 
deep beams. 

; The shear strength is inversely proportional to the shear span to depth ratio; 
the higher the shear span to depth ratio, the less the shear strength. 

; The shear strength increases with the increase of the main longitudinal 
bottom reinforcement ratio up to a certain limit beyond which no im-
provement can be achieved. 

; The effect of the beam span to depth ratio and web reinforcement on the 
shear strength is very small. 
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Abstract. A vast majority of engineering problems are inverse problems, 
while the mathematically based engineering problem solving methods and 
computational mechanics are primarily capable of solving forward 
problems. Nature has evolved highly effective, robust and imprecision 
tolerant problem solving strategies for very difficult inverse problems.  
Biologically inspired soft computing methods such as neural network, 
genetic algorithm and fuzzy logic inherit the basic characteristics of 
nature’s problem solving methods and, as such, they are suitable for 
inverse problems in engineering. In this chapter we start by discussing the 
fundamental differences between the mathematically based engineering 
problem solving methods and biologically inspired soft computing 
methods. Bulk of the rest of the chapter is devoted to applications of 
neural networks in computational mechanics and several difficult inverse 
engineering problems.   

1 Introduction 
The first application of neural networks in computational mechanics and 
structural engineering was in the modeling of the constitutive behavior of 
materials (see Ghaboussi Garrett and Wu, 1990, 1991). In that application it was 
demonstrated that neural networks are capable of learning the constitutive 
behavior of plane concrete in two-dimensions directly from experimental results.  
Although, that work demonstrated the potential of neural networks in 
computational mechanics, there remained a number of important unresolved 
questions. Some of these questions dealt with the theoretical issues such as: how 
do the neural networks learn and what do they learn from training data; what are 
the limitations of such learning in computational mechanics and how can these 
limitations be quantified; how to determine the sufficiency of data for training 
neural networks; and other similar issues. For example, in the first application of 
neural networks in constitutive modeling (see Ghaboussi Garrett and Wu 1990, 
1991) the term “comprehensive data set for training of neural networks” was 
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used. However, at that time it was not clear how to determine what constituted a 
comprehensive data set. Other unresolved questions dealt with practical issues, 
such as the size of neural networks and training algorithms.  Considerable 
advances have been made in understanding these issues and some of these 
advances will be discussed in this chapter.  

It is assumed that the reader has a basic knowledge of neural networks and 
computational mechanics. The discussions in this chapter are devoted to the 
issues that make the application of neural networks in computational mechanics 
and engineering possible and effective, leading to new and robust methods of 
problem solving. Since neural networks and other computational intelligence or 
soft computing tools are biologically inspired, we will first examine the 
computing and problem solving strategies in nature. We will discuss the 
fundamentals of the differences between the computing and problem solving 
strategies in nature and our mathematically based problem solving methods such 
as computational mechanics. Understanding these differences plays an important 
role in development and utilization of the full potential of soft computing 
methods. They also help us understand the limitations of soft computing 
methods.  

Another important focus of this chapter is on examining the characteristics 
of the problems that biological systems encounter and how nature has evolved 
effective strategies in solving these problems. A vast majority of these problems 
are inverse problems, as are a vast majority of engineering problems, including 
problems in mechanics. Again, our problem solving strategies have evolved 
differently as they are based on mathematics.  We will examine the limitations 
of the mathematically based methods in directly addressing the inverse 
problems.  Biologically inspired soft computing methods offer potentials for 
addressing these methods. However, full utilization of these potentials requires 
new thinking and full understanding of the fundamental issues that will be 
discussed in this chapter. 

2 Computing and Problem Solving in Nature 
Computing and problem solving does occur in nature in a massive way. We 
normally do not assign problem solving capabilities to biological systems, such 
as animals, eco-systems and insect colonies. Computing in nature does occur in 
human and animal brains. Although brains are very different than our 
computers, they nevertheless do perform computing tasks. Moreover, human or 
animal brains perform computing tasks that are far more complex and well 
beyond the capabilities of our present computers. Computing and problem 
solving strategies in nature have evolved to develop capabilities that are 
important in the survival and propagation of the species. Exploring these 
capabilities is important in understanding the fundamentals of computing and 
problem solving in nature; these fundamentals are very different than the 
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fundamentals underlying our engineering problem solving methodology, 
including mechanics, computation and computational mechanics.  
Understanding these differences is essential in order to effectively use the 
biologically inspired soft computing methods in engineering and computational 
mechanics. 

Computing and problem solving strategies in nature have evolved to solve 
difficult inverse problems. Most of the problems that human and animal brains 
solve are inverse problems. Our engineering problem solving methods work 
differently.  Although most engineering problems are also inverse problems, we 
normally pose them as forward problems and solve them that way.  In a forward 
problem the system (or model of the system) and the input to the system is 
known, and the output needs to be determined. We pose and solve the 
engineering problems as forward problems because the mathematically based 
problem solving methods in mechanics and engineering are only suitable for 
solving forward problems.  These issues will be further discussed later in this 
chapter. 

There are two types of inverse problems. In the first type of inverse 
problems the system and the output of the system is known and the input to the 
system that produces the known output needs to be determined. In the second 
type of inverse problems the input and output to the system are known and the 
system needs to be identified.   

One of the important classes in the first type of inverse problems in nature 
is recognition, such as: voice recognition, face recognition, recognizing the prey, 
recognizing danger, etc. The forward problems in this class are when we know 
an individual and hear his/her voice and see his/her face. The inverse problem is 
when we hear a voice or see a face and have to identify the person. Another 
class of inverse problems in nature is control; our brains control our limbs or 
control the functioning of internal organs. The forward problem in this case is to 
send a known signal to a limb or an organ and observe the response of the limb 
or organ. The inverse problem is to determine the right input signal that would 
produce the desired response in a limb or an organ.   

Brains have evolved to perform these inverse tasks with two important 
characteristics. These inverse problems have to be solved robustly and in real-
time. Survival depends on these characteristics. Animals have to recognize 
danger instantaneously in order to take evasive action. Similarly, they have to 
recognize their prey in real-time to have any chance of hunting it successfully. 
Delay in recognition can be detrimental to a human being or an animal. 
Robustness is also a key factor in solving the inverse problems in nature. Images 
may be partially blocked or voices may contain noise. Robustness in some 
important way implies imprecision tolerance. All of the inverse problems in 
nature have a certain degree of imprecision tolerance. For example, a predator 
needs to determine its distance to his prey. However, it does not need to know 
that distance precisely; an approximate value will suffice. Similar degrees of 
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imprecision tolerance exist in all of the inverse problems in nature. Nature’s 
problem solving strategies have evolved with a degree of imprecision tolerance.   

Brains have evolved as massively parallel systems of neurons connected 
with synapses and dendrites. The massively parallel structure of the brains 
makes possible the real-time and robust computing in solving the inverse 
problems. Moreover, it inherently operates with a degree of imprecision 
tolerance. This is of course very different from our present day computers that 
have a high degree of precision requirement. We will also discuss later in this 
chapter why our computers are not suitable for directly solving the inverse 
problems. 

How do biological systems solve inverse problems? This is an important 
question, since similar methods can be deployed in solving inverse problems in 
engineering and computational mechanics. Nature and brains solve inverse 
problems by utilizing two important strategies: learning and reduction in 
disorder. First, we will discuss the strategy of learning in solving inverse 
problems. Of course, as we will see later, learning itself is a form of reduction in 
disorder. 

Learning from the forward problems is the main strategy that nature uses to 
solve the inverse problems. For example, in the problem of voice and face 
recognition the repeated instances of seeing a person and hearing their voice are 
the forward problems that lead to learning to solve the inverse problem of 
recognition. Learning to control ones limbs also occurs by the repetition of the 
forward problem. This is clearly seen when a baby learns through repetition to 
control the movement of his or her arms, fingers and other limbs. The 
information learned from forward problems is stored in the synapses of the 
neurons in our brains. Similar strategies can be used in engineering and 
computational mechanics. In this case, the information acquired for solving the 
inverse engineering problem is stored in the connection weights of the neural 
networks. Later in this chapter we will present a case of a successful application 
of the same strategy in solving a difficult inverse problem in engineering.  What 
makes it possible to apply this strategy to engineering problems is the learning 
capability of the neural networks, where the knowledge and information is 
stored in the connection weights. 

Reduction in disorder is also a powerful method that nature uses for solving 
inverse problems.  This may not be as clearly observable as the learning.  In fact, 
reduction in disorder underlies learning in massively parallel systems, such as 
brains and neural networks. As the collective state of a complex system (brains 
and neural networks are complex systems) approaches a solution to a specific 
problem, disorder in the state corresponding to that problem reduces.  Evolution 
also leads to reduction in disorder: in this case in a self-organized manner.  
Organisms have evolved a high degree of order (and a very low degree of 
disorder).  Similarly, evolutionary methods, such as genetic algorithm, also lead 
to reduction in disorder. We can also say that there is an increase in order (or 
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reduction in disorder) when brains or neural networks approach a state for 
storing acquired knowledge and information. Acquisition and storing of the 
information in the synapses or connection weights constitutes learning. 

3 Mechanics, Computation and Computational Mechanics 
The field of mechanics deals with observing and modeling the natural 
phenomena. When a physical event is observed - whether it is an experiment or 
a naturally occurring event - new information is generated.  This information 
about the physical event is contained in the data that may consist of the 
recordings of the physical event and/or numerical data from the measurements.  
The next step is to create a model that can be used to describe that event and 
other similar events, leading to unifying principles. The universal approach, 
from the inception of mechanics, has been to develop mathematical models of 
observed phenomena and physical events. We normally accept this approach 
without even thinking about it, with the implied understanding that the 
mathematical modeling is the only possible method that can be used to describe 
the natural phenomena. Here, we need to further examine this approach, since it 
is not the only possible method of describing the natural phenomena. In fact, 
there are many other methods.  In this chapter we are interested in methods that 
involve extracting and storing the information about the natural phenomenon 
contained in the data, in the connection weights of neural networks. Information 
contained in a mathematical model can also be stored in a neural network. Since 
developing a mathematical model of a natural phenomenon and storing the 
information about that phenomenon are two completely different approaches, it 
is important that we examine the fundamentals of both approaches. We will 
examine the fundamentals of mathematically based mechanics and 
computational mechanics in this section, 

All modeling, engineering problem solving methods, and computation is 
based on mathematics. We will refer to them as mathematically based methods.  
All the mathematically based methods inherit their characteristics from 
mathematics. Normally, we do not even think about the fundamental 
characteristics of the mathematically based methods. However, in this case we 
need to examine them, since they are so radically different from the fundamental 
characteristics of the problem solving strategies in nature that underlie the soft 
computing or computational intelligence methods. 

The three fundamental properties of the mathematically based methods in 
engineering and computational mechanics that are inherited from mathematics 
are: precision; universality; and functional uniqueness. 

3.1 Precision 

Precision or “exactness” is a property of all the mathematically based methods.  
It is because of the precision requirement that all computing, including 
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computational mechanics, is considered as “hard computing”. Precision 
requirements are the most significant differences between the soft computing 
and hard computing methods. Precision requirements may not be obvious to the 
users of engineering software. For example, the input to a typical finite element 
analysis program may define the geometry of the structure and specify the 
material parameters and loads. These quantities, especially the material 
parameters, cannot be determined with a high degree of precision. However, the 
computer software requires precise values. Users of the computer software often 
provide the best estimates of the input parameters and they do not view them as 
precise. However, the mathematically based methods and hard computing 
software consider the input parameters to be precise to within round off 
(normally six to fourteen significant figures).  Similarly, the output of the 
engineering computer software is also precise to within round off.  However, 
they are not often considered so by the users of the software.  In fact, there may 
not be much use for a high degree of precision in most engineering and 
computational mechanics problems. 

3.2 Universality 

Universality is such a basic property of all mathematical functions that we 
usually do not think about it. Universality means that the mathematical functions 
are defined and realized universally for all the possible values of their variables.  
Again, mathematically based methods use functions that are universal but the 
physical phenomena they describe most often are not. A simple example is the 
linearly elastic material behavior. When we write the expression that stress = 
modulus of elasticity x strain, it describes a phenomenon that is only valid over 
a range of the stresses and strains. But the equation itself is valid for all the 
possible values of stress and strain. We will see later that the same information 
can be learned by a neural network to within an imprecision tolerance over the 
range of its validity. 

3.3 Functional uniqueness 

Mathematical functions are also unique in the sense that each function provides 
a unique mapping different from all the other functions.  For example, there is 
only one sin(x) function and it is valid for all the possible values of x from 
minus infinity to plus infinity.  We will see later that in soft computing, different 
neural networks, with different numbers of neurons can represent the same 
function over a range of x to within a prescribed level of imprecision tolerance. 

The consequences of precision, universality, and functional uniqueness in 
the mathematically based engineering problem solving methods and hard 
computing are that these methods are only suitable for solving forward 
problems.  In the forward problems the model of the system and the input to that 
system are known, and the output of the system is determined. Mathematically 
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based methods are not suitable for directly solving the inverse problems.  
Although a vast majority of engineering and computational mechanics problems 
are inherently inverse problems, we do not pose them as such, and do not 
consider solving them as inverse problems.  An important reason for this is that 
the inverse problems do not have unique solutions, and very often there is not 
enough information to determine all the possible solutions.  The few inverse 
problems that are tackled with the conventional mathematically based methods 
are formulated such that the result is determined from the repeated solutions of 
the forward problems. 

4 Hard and Soft Computing Methods 
Almost all the computing, including computational mechanics and finite element 
analysis, have to be considered hard computing.  All computing are based on 
mathematical approaches to problem solving, and they inherit their basic 
characteristics from mathematics.   

The hard computing methods often solve an idealized precise problem 
deterministically. Using the current hard computing methods usually involves 
three steps. First, the problem is idealized to develop a precise mathematical 
model of the system and the input data. Next, the hard computing analysis is 
performed within the machine precision on a sequential or parallel computer.  
Finally, the output to the idealized problem is obtained with a high degree of 
precision, often much higher level of precision than required in practice. This 
form of hard computing method is often used in modeling and evaluation of 
behavior and design of physical systems that are often associated with a certain 
level of imprecision and uncertainty. Engineering judgment is used in an ad hoc 
manner to utilize the results of the hard computing analyses. 

The consequence of the mathematically based precision in the hard 
computing methods is that there is no built-in procedure for dealing with 
uncertainty, lack of sufficient information, and scatter and noise in the data. All 
the input data must be provided and, where there is a gap, estimates must be 
made to provide “reasonable precise values" of the input data. Also, all the noise 
and scatter must be removed before providing the input data to the hard 
computing methods. Inherently, there are no internal mechanisms for dealing 
with the uncertainty, scatter and noise. Consequently, the hard computing 
methods generally lack robustness. 

Hard computing methods are more suitable for direct or forward analysis 
and are often used for problems posed as direct.  It is very difficult to solve 
inverse problems with the current state of the hard computing methods. As will 
be discussed in a later section, there are many inverse problems that are either 
not solved currently, or a simplified version of these problems is posed and 
solved as direct problems. 
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4.1 Biologically Inspired Soft Computing Methods 

Soft computing methods are the class of methods which have been inspired by 
the biological computational methods and nature's problem solving strategies.  
Currently, these methods include a variety of neural networks, evolutionary 
computational models such as genetic algorithm, and linguistic based methods 
such as fuzzy logic. These methods are also collectively referred to as 
Computational Intelligence Methods. These classes of methods inherit their 
basic properties and capabilities from the computing and problems solving 
strategies in nature.  As mentioned earlier, these basic characteristics are 
fundamentally different from the basic characteristics of the conventional 
mathematically based methods in engineering and computation.   

In the majority of the applications of neural networks and genetic algorithm, 
researchers have used these methods in limited ways in simple problems.  In the 
early stages of introduction of any new paradigm, it is initially used in a similar 
manner as the methods in existence prior to the introduction of the new 
paradigm.  Neural networks and other computational intelligence methods are 
new paradigms.  It can be expected that initially they will be used in similar 
ways as the mathematically based methods in engineering and computational 
mechanics, as are the vast majority of current applications.  Such applications 
seldom exploit the full potential of the soft computing methods. For example, 
neural networks are often used as simple function approximators or to perform 
tasks that simple regression analysis will suffice.  Similarly, genetic algorithm is 
often used in highly restricted optimization problems. The learning capabilities 
of neural networks and the powerful search capabilities of genetic algorithm can 
accomplish far more. They can be used in innovative ways to solve problems 
which are currently intractable and are beyond the capability of the conventional 
mathematically based methods. Problem solving strategies of the biological 
systems in nature often provide good examples of how these methods can be 
used effectively in engineering. Natural systems and animals routinely solve 
difficult inverse problems. Many of these problem solving strategies can be 
applied to engineering problems. 

4.2 Imprecision Tolerance and Non-universality   

Biological systems have evolved highly robust and effective methods for dealing 
with the many difficult inverse problems, such as cognition; the solution of these 
problems is imperative for the survival of the species.  A closer examination of 
cognition will reveal that for animals, precision and universality are of no 
significance.  For example, non-universality in cognition means that we do not 
need to recognize all the possible voices and faces.  Recent studies have 
provided a plausible explanation for the large size of human brains based on 
cognition.  The large size of human brains have evolved so that the humans can 
recognize the members in their living groups.  Human beings lived in groups of 
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150 to 200 individuals and our brains had to be large enough to recognize that 
many individuals.  Our brains are only capable of recognizing 150 to 200 faces.  
This non-universality is in contrast with the mathematically based methods.  If it 
were possible to develop a mathematically based cognition method, it would be 
universal and it would be able to recognize all the possible faces.   

On the other hand, real time response and robustness, including methods for 
dealing with uncertainty, are essential in nature.  Soft computing methods have 
inherited imprecision tolerance and non-universality from biological systems.  
For example, a multi-layer, feed-forward neural network representing a 
functional mapping is only expected to learn that mapping approximately over 
the range of the variables present in the training data set.  Although different 
levels of approximation can be attained, the approximate nature of the mapping 
is inherent. 

Another inherent characteristic of the soft computing methods is their non-
universality.  Soft computing methods are inherently designed and intended to 
be non-universal.  For instance, neural networks learn mappings between their 
input and output vectors from the training data sets and the training data sets 
only cover the range of input variables which are of practical interest.  Neural 
networks will also function outside that range. However, the results become less 
and less meaningful as we move away from the range of the input variables 
covered in the training set. 

4.3 Functional Non-uniqueness 

A third characteristic of the soft computing methods is that they are functionally 
non-unique. While mathematical functions are unique, neural network 
representations are not unique. There is no unique neural network architecture 
for any given task. Many neural networks, with different numbers of hidden 
layers and different number of nodes in each layer, can represent the same 
association to within a satisfactory level of approximation. It can be clearly seen 
that the functional non-uniqueness of the neural networks is the direct 
consequence of their imprecision tolerance. 

An added attraction of soft computing methods in computational mechanics 
is as the consequence of the imprecision tolerance and random initial state of the 
soft computing tools. This introduces a random variability in the model of the 
mechanical systems, very similar to the random variability which exists in the 
real systems. The random variability plays an important role in most practical 
problems, including nonlinear quasi static and dynamic behavior of solids and 
fluids where bifurcation and turbulence may occur. Finite element models are 
often idealized models of actual systems and do not contain any geometric or 
material variability.  An artificial random variation of the input parameters is 
sometimes introduced into the idealized finite element models to account for the 
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random scatter of those parameters in the real systems. On the other hand, the 
soft computing methods inherently contain random variability. 

In summary, we have discussed the fact that the mathematically based 
methods in engineering and computational mechanics have the following basic 
characteristics: 

Precision 
Universality 
Functional uniqueness 

In contrast, biologically inspired soft computing methods have the following 
opposite characteristics: 

Imprecision tolerance 
Non-universality 
Functional non-uniqueness 

Although it may be counterintuitive, these characteristics are the reason behind 
the potential power of the biologically inspired soft computing methods. 

5 Neural Networks as Soft Computing Tools 
The discussion in this section will be focused on multi-layer, feed-forward 
neural networks, which are currently the most commonly used neural networks 
in engineering applications (see Ghaboussi and Wu, 1998, Ghaboussi, 2001).  
These neural networks consist of several layers of artificial neurons or 
processing units.  The input and the output layers are the first and the last layers.  
The layers between the input and output layers are referred to as the “hidden 
layers”.  Each neuron is connected to all the neurons in the next layer, and the 
signals propagate from the input layer, through the hidden layers, to the output 
layer.  The number of neurons in the input and output layers are determined by 
the formulation of the problem.  The number of neurons in the hidden layers 
defines the capacity of the neural network which is related to the complexity of 
the underlying information in the training data set.  The relationship between the 
number of neurons in the hidden layers, the capacity of neural networks, and the 
complexity of the underlying process being modeled is not easily quantifiable at 
the present.  The input vector is provided as the activation of the neurons at the 
input layer.  Signals propagate from the input layer, through the hidden layer, to 
the output layer.  The activations of the output nodes constitute the output of the 
neural network.   

A neural network is trained with the training data set, such that within the 
domain of the training data it approximately represents the mapping between the 
input and output vectors that exists in the training data set.  The approximation 
in neural networks is represented by the error vectors within the domain of the 
training data.  Training of the neural network is the process of reducing the norm 
of the error vector to a level below a tolerance.  
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A neural network learns to satisfy its training data set approximately. It 
differs fundamentally from a mathematical interpolation function, which 
matches the training data set exactly. Neural networks are also different from a 
regression analysis, which requires a specified function whose parameters are 
determined. 

In general, the output errors for the training data depend on a number of 
factors relating to the complexity of the underlying information present in the 
training data set, as well as the neural network architecture and the training 
process. It is important to note that it is not desirable to reduce the error too 
much. In the limit, if the output error is reduced to zero, then the neural network 
would be functioning similar to an interpolation function and it will lose its 
generalization capability between the data points in the training data set. The 
generalization capability of neural networks is the direct consequence of the 
imprecision tolerance. 

Non-universality of soft computing methods that was discussed earlier is an 
important consideration in the use of neural networks. Non-universality means 
that neural networks can only learn to approximate relations that are within the 
range of input variables present in the training data. Outside that range the 
response of the neural network is not controlled. This is demonstrated with a 
simple example shown in Figure 1. In this example a simple neural network 
NN(1, 3, 3, 1) (the numbers in the parenthesis are the number of node in the 
input, hidden and output layers) is trained with two sets of data taken from 
within two ranges of sin(x) shown in the upper portion of the figure. Shown in 
the lower portion of the figure are the responses of the trained neural networks.  
It is clearly seen that the two neural networks have learned to approximate sin(x) 
within the range of x in their training data. Outside those ranges the response of 
the trained neural networks has no relation to the sin(x).  

Although neural networks are inherently nonlinear, they can be trained to 
learn linear functions within a range. This is shown in Figure 2 where the 
training data is selected from a linear function within a range. It is clear that the 
trained neural network has learned to approximate a linear function within that 
range, while outside that range it exhibits a nonlinear response. 

Neural networks can be trained and retrained. Retraining is an important 
capability of neural networks. When new data becomes available with enhanced 
information content, the new data can be added to the existing data set and used 
in retraining the neural network. In this case, the neural network will be learning 
the new information in the additional data. If the new data does not have any 
new information, the connection weights of the previously trained neural 
network do not change. It is not often possible to determine whether the new 
data has new information. This can be easily verified by monitoring the changes  
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Figure 1. Neural networks trained to approximate sin(x)  
within two different ranges of x 

 
 

 
 

 
Figure 2. Neural network learns to approximate a linear function  

within two ranges of x. 
 
in the connection weights during the retraining. If the neural network is retrained 
only with the new data, it will “forget” the information that was contained in the 
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data used in the original training. This is demonstrated in Figure 3.  The upper 
part of the figure shows the range of the training data and the lower part of the 
figure shows the performance of the trained neural network. 

The neural network NN(1, 3, 3, 1) was first trained with data from a range 
of x in sin(x) shown on the left. The same neural network was next retrained 
with data from another portion of the same function, shown on the right. It can 
be seen that the retrained neural network “forgot” the earlier information and 
learned to approximate the data within the new range. 
 

 
Figure 3. Retraining a neural network with new data. 

 
Imprecision tolerance in neural networks creates a capability for dealing 

with scatter in data. The information in the training data sets for neural networks 
can contain many forms of information.  Some information in the data is fairly 
dominant and easily stands out.  Other types of information may appear weak 
and difficult to learn.  All types of information may contain scatter, which itself 
can be considered a form of information. Neural networks can deal with scatter 
in data if trained properly. The danger in this case is overtraining that may force 
the neural network to learn the scatter as well. We will demonstrate these issues 
with a simple example. 

Figure 4 shows a data set in the x, y plane. We wish to train a neural 
network to relate x (input) to y (output). Clearly, this data has a dominant pattern 
consisting of two nearly linear segments and a transition between them around  
x = 8.  
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Figure 4. Data with scatter. 

 
In the upper left part of Figure 5, the response of small neural network 

NN(1, 2, 2, 1) trained with the data with scatter is shown. It is clear that the 
neural network has learned the dominant pattern in the data well. If the training 
in the same neural network is continued and new nodes are added to the hidden 
layers adaptively (adaptive node generation will be discussed later), the response 
of the neural network is shown in the other parts of Figure 5. For example, in the 
upper right part of Figure 5 the neural network started with the same architecture 
as in the upper left, with 2 nodes in each of the two hidden layers, and during the 
continued training additional nodes were added to the hidden layer, ending with 
5 nodes in each hidden layer. It can be seen that the neural network has started 
learning the scatter in the data. The process of training and adding new nodes to 
the hidden layers continued and two instances are shown in the lower part of 
Figure 5, when hidden layers reach 10 and 20 nodes each. The continued process of 

 

 
 

Figure 5. Training and over-training of a neural network  
with data containing scatter. 
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over-training is clearly visible.  The part of Figure 5 on lower right shows a large neural 
network that is clearly over-trained and has learned to represent all the data points 
precisely.  Although the over-trained neural network matches the data points, it may give 
seriously erroneous and unreasonable results between the data points. 

It is important to be aware of the possibility of over-training the neural 
networks when dealing with measured and real data that often contain scatter.  
When dealing with numerically generated data, often the data does not contain 
any scatter. In those cases the over-training may not be obvious in the 
performance of the neural network, as is the case when there is scatter in the 
data. In some cases the nature of the information contained in the numerically 
generated data, and the distribution of the data point may also lead to similar 
phenomena as overtraining shown in Figure 5. 

Transition from mathematical models to information contained in data .In 
working with neural networks it is always important to remember that the 
information that the neural network learns is contained in the data. The principle 
of functional non-uniqueness, discussed earlier, means that different neural 
networks can be trained to learn the information contained in the same data with 
some imprecision.  In many applications the data changes and the information 
contained in the data also changes and is updated. We will see an example of 
this in the autoprogressive algorithm that will be discussed later in the chapter. 
At any point in the evolution of the data, it is possible to discard the old trained 
neural network and start with a new neural network and train it on the expanded 
and modified data set. 

This observation leads to an important and profound point about the use of 
neural networks in modeling physical phenomena such as modeling of material 
behavior. In the mathematically based approaches, we use mathematical 
functions to model the physical phenomena. The information about the response 
of the physical system to the external stimuli is contained in that mathematical 
model. 

When we use neural networks to model the physical phenomena, the 
information about the response of the physical system to the external stimuli is 
learned by the neural network from its training data. So, if we start thinking in 
terms of information - rather than mathematical models - then the neural 
networks are simply tools for extracting the information from the data and 
storing it. It is the learning capabilities of the neural networks that allow us to 
extract the information.  Since we can extract the information from data at many 
stages, and with many different neural networks, it is the data and the 
information contained in that data that is the soft computing equivalent of the 
mathematical model and the information contained in the mathematical model. 
In moving from mathematical modeling to soft computing with neural networks, 
it is important that we start transitioning our thinking from mathematical model 
to the information contained in data. 
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6   Neural Networks in Material Modeling 
Constitutive modeling is an inverse problem.  In a typical material experiment 
stresses are applied to a specimen and the resulting strains are measured.  If the 
material constitutive model is considered as a system, then the stresses and 
strains are the input and the output of the system.  The material constitutive 
modeling is therefore an inverse problem, where the input and output are known 
and the system needs to be determined.   

The conventional approach to this problem is to develop a mathematical 
model. Plasticity and other material modeling methods use mathematical 
modeling to represent the information present in the measured stresses and 
strains from the experiments. Neural networks can be used directly to extract the 
information from the experimental data.  First application of this approach to 
model the constitutive behavior of plane concrete in two dimensions is reported 
in (Ghaboussi, Garrett and Wu 1990, 1991). Experimental results were used to 
directly train the neural network. It was shown that the neural networks can 
learn to relate the stresses to strains or vice versa. For practical use in finite 
element analysis it is preferable that the strains be used as the input to the neural 
networks and the stresses be used as the output. A typical neural network for a 
two dimensional material model can have the three components of strain as 
input and the three components of stress as output. However, this type of neural 
network is not suitable for representing the path dependence in constitutive 
behavior of materials.  

Information required to represent the path dependence of material behavior 
consists of two parts: the current state of the material and immediate past 
history. The current state may consist only of the current state of stresses and 
strains, and this may be sufficient in absence of strong path dependence. In that 
case the input to the neural network may consist of the current state and the 
strains at the end of the increment (or the strain increments) and the output 
representing the stresses at the end of the increment (or the stress increments). 
As a simple example, we can consider a one-dimensional material behavior. At 
any point, given the values of the strain and the stress, the material behavior 
depends on whether the strains are increasing (loading) or decreasing 
(unloading). The current state and strain increments as input contain sufficient 
information to uniquely determine the stress increment as output. 

Path dependence in multi-dimensions is far more complex and often the 
current state as input is not sufficient.  Information about the past history of the 
state of strains and stresses is also needed.  A three-point model was proposed in 
paper by Ghaboussi, Garrett and Wu, 1991 in which the input consisted of the 
strains and stresses at tn (current state), and at tn-1, tn-2 (history points) and the 
strain increments (or strains at tn+1). The output of the neural network 
represented the stresses at tn+1. This three point model was successfully applied 
to a number of materials. 



www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 207

Neural network were successfully used in the constitutive modeling of 
concrete, composites and geomaterials (see Ghaboussi, Garrett and Wu 1990, 
1991; Wu 1991; Ghaboussi 1992a, 1992b; Wu and Ghaboussi 1993; Ghaboussi, 
Lade and Sidarta 1994; Ghaboussi and Sidarta, 1998; Sidarta and Ghaboussi, 
1998, Ghaboussi, Pecknold, Zhang and HajAli 1998), strain softening material 
models in reinforced concrete (Kaklauskus and Ghaboussi, 2000), rate 
dependent material behavior (Jung and Ghaboussi, 2006a, 2006b), and hysteretic 
behavior of materials (Yun 2006, Yun Ghaboussi and Elnashai 2008a, 2008b, 
2008c). 

6.1 Nested Adaptive Neural Networks (NANN) 

Often, it is difficult to determine the number of nodes in the hidden layers in a 
given problem. It was mentioned earlier that the size of the neural network is 
related to the complexity of the information contained in the training data. At 
present it is not possible to quantify the degree of complexity in the data. A 
method for adaptive node generation in neural networks was proposed in an  
article by Joghataie, Ghaboussi and Wu (1995). This method allows the training 
to start with a neural network with few hidden layer nodes and adaptively add 
new nodes to the hidden layers during the training, ending with a neural network 
that has the necessary architecture to learn the information in the data. This 
process is shown in Figure 6. 
 
 

 
Figure 6. Adaptive node generation. 

 
There are several steps in the adaptive node generation, illustrated in Figure 

7.  During the training the learning rate is monitored. The learning rate that is a 
measure of the change in the output errors normally reduces during the training.  
When the learning rate falls below a prescribed value, it is an indication that the 
capacity of the neural network is reached.  At this point one node is added to 
each of the hidden layers.  This creates a number of new connections that are 
assigned random initial weights. The old connection weights are frozen for a 
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number of epochs when the training resumes and only the new connection 
weights are modified. This is based on the rationale that the new connection 
weights are trained to learn the portion of the information that was not learned 
by the old connection weights. After a number of epochs (either prescribed, or 
adaptively determined by monitoring the learning rate) the old connections are 
unfrozen and the training continues. 

 
  

 
Figure 7, Process of adaptive node generation. 

 
The nested part of “nested adaptive neural networks” deals with the 

structure of the information in the training data. In most cases the information in 
the training data can have a clear structure. This structure may not be obvious 
from the data itself but it can be discerned from the process that was used to 
generate the training data. In some situations the structure in the training data 
can be exploited and used in the design of the neural network architecture, or in 
designing a collection of neural networks. 

An example of the structure of the information in the training data is the 
nested structure; it is possible to recognize subsets of the data that have a clear 
hierarchical nested structure.  Starting from the lowest subset, each data subset is 
in turn a subset of the next higher level data subset (see Ghaboussi Zhang Wu 
and Pecknold 1997, Ghaboussi and Sidarta, 1998). 

Consider the example of the training data in constitutive behavior of the 
materials. In this case, one type of data hierarchy comes from the dimensional-
ity. The data from one-dimensional constitutive material behavior is a subset of 
the data from two-dimensional constitutive material behavior that in turn is a 
subset of the data from three dimensional material behavior.  The same nested 
structure is present in the information contained in the training data. If we 
assume that the functions fj describing the material behavior in 1D, 2D, 
axisymmetric, and 3D, belong to 1, 3, 4, and, 6 dimensional function spaces Fj. 

 
 1j = fj ( Jj )      j = 1, 3, 4, 6 
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Then, these function spaces have a nested structure. 

 
 

 
A similar type of nested structure is present in the information in the data 

generated from time-independent and time-dependent material behavior.  In this 
case, the information on the time-independent material behavior is a subset of 
the information on the time-dependent material behavior. 

The nested structure of the information in the data can be reflected in the 
structure of the neural networks.  As many neural networks as the subsets can be 
developed with the hierarchical relationship between those neural networks.  A 
base module neural network can be trained with the lowest level subset, in this 
case the one-dimensional material behavior. Next a second level module can be 
added to the base module that represents the information on the two-dimensional 
material behavior that is not represented in the base module. The connections 
between the second level module and the base module have to be one way 
connections; there are connections from the second level module to the base 
module, but no connections from the base module to the second level module.  
The information on one-dimensional material behavior does not contribute to the 
additional information needed for the two-dimensional behavior. This is the 
reason behind the one way connection. Similar hierarchies will be present when 
the third and fourth level modules are added to represent the axisymmetric and 
the three-dimensional material behavior. 

Another example of the nested structure of information in the data is in 
modeling the path dependency of material behavior with history points. In the 
first application of neural networks in constitutive modeling (see Ghaboussi, 
Garrett and Wu, 1991) path dependency in loading and unloading was modeled 
with three history points. When path dependency is not important, it is sufficient 
to provide the current state of stresses and strains and the strains at the end of the 
increment as input to obtain the state of stresses at the end of the increment.  
This information is not sufficient when path dependency becomes important, for 
instance, when unloading and reloading occurs. In this case, the material 
behavior is influenced by the past history. In this case path dependency was 
modeled by additionally providing the state of stresses and strains at three 
history points. This was called the “three point model.” 

The following equation shows the path dependent material behavior 
modeled with history points. Function fjk relates the stress rate to strain rate, 
where subscript j represents the dimension and subscript k represents the 
number of history points. 

fj  K Fj 

F1  L F3  L F4  L F6 
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Functions fjk belong to function spaces Fjk that have a nested relationship. 

 
 

 

A nested adaptive neural network for a three point model of a one-
dimensional material behavior is illustrated in Figure 8. Figure 8a shows the 
adaptive training of the base module. The input to the base module consists of 
the current state of stresses and strains and the strain increment. Figures 8b and 
8c show the addition of the second and third history points and their adaptive 
training. Each history module has only one-way connections to the previous 
modules. The reason for the one-way connections is obvious in this case; the 
past can influence the present, but the present has no influence on the past. 

Nested adaptive neural networks were first applied to an example of one-
dimensional cyclic behavior of plain concrete (see Zhang, 1996). NANNs were 
trained with the results of one experiment and the trained neural network was 
tested with the results of another experiment performed at a different laboratory.  
First, the base module was trained adaptively. As shown in the following 
equation, the input of the neural network is strain and the output is stress 
increment. Each of the two hidden layers started the adaptive training with 2 
nodes and ended with four nodes.  

 
 
 
The notation in this equation was introduced to describe both the 

representation and the network architecture. The left hand side of the equation 
shows the output of the neural network. The first part inside the square brackets 
describes the input to the neural network and the second part describes the 
network architecture.  

Next, the first history point module was added and the resulting neural 
network is shown in the following equation. The first history module had two 
input nodes, no output node, and each of the two hidden layers started the 
adaptive training with 2 nodes and ended with 12 nodes. 

 
 

Fj,k  L Fj,k+1 
fj,k K Fj,k 

1j = fjk (1j,0, Mj,0, 1j,-1, Mj,-1, …, 1j,-k, Mj,-k, J j)   
 
        j = 1, 3, 4, 6 ; k = 0, 1, 2, … 

   

�1n+1 = NN0 [Mn+1: 1, 2 – 4, 2 – 4, 1] 
 

�1n+1 = NN1 [Mn, 1n,  Mn+1: (1, 2), (2 – 4, 2 – 12),   
(2 – 4, 2 – 12), (1)] 
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Figure 8. Nested adaptive neural network for material behavior in 1D 

 
 

The performance of the neural network NN1 on the training and testing 
experimental results is shown in Figure 9a. 
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The following equation shows the NANN after the second history point was 
added and adaptively trained.   
 
 
 
 
In this case, the hidden layers in the second history module started the adaptive 
training with 2 nodes and ended with 10 nodes.  The performance of the NANN 
NN2 with two history points is shown in Figure 9b. 

The following equation shows the NANN after the third history point was 
added and adaptively trained.   
 
 
 
 
 
In this case, each of the two hidden layers in the third history module started the 
adaptive training with 2 nodes and ended with 9 nodes.  The performance of the 
NANN NN3 with three history points is shown in Figure 9c. 

The cyclic behavior of plain concrete shown in Figures 9a, 9b and 9c 
clearly exhibits a strong path and history dependence.  In order to capture this 
history dependent material behavior, history points are needed and this is clearly 
shown in Figures 9a, 9b and 9c by the fact that the performance of the NANN 
improves with the addition of the new history points.  The neural network NN3 
with three history points appears to have learned the cyclic material behavior 
with a reasonable level of accuracy. These figures also demonstrate that the 
trained neural network has learned the underlying material behavior, not just a 
specific curve; the trained neural network is able to predict the results of a 
different experiment that was not included in the training data. 

6.2 Neural Networks for Hysteretic Behavior of Materials 

In the previous section it was demonstrated that by using the history points, such 
as the three point model, it is possible to model the hysteretic behavior of 
materials.  In this section we will describe a new method for modeling the 
hysteretic behavior of materials (see, Yun, 2006, Yun, Ghaboussi, Elnashai 
2008a). 

If we look at a typical stress-strain cycle, it is easy to see that the value of 
strain is not sufficient to uniquely define the stress, and vice versa.  We refer to 
this as one-to-many mappings. Neural networks can not learn one-to-many 
mappings. This can be remedied by introducing new variables at the input to  

 

�1n+1 = NN2 [Mn, 1n, Mn-1, 1n-1,   Mn+1: (1, 2, 2),  
(2–4, 2–12, 2–10), (2 –4, 2–12, 2–10), (1)] 

 

�1n+1 = NN3 [Mn, 1n, Mn-1, 1n-1, Mn-2, 1n-2, Mn+1: (1, 2, 2, 2),  
             (2–4, 2–12, 2–10, 2–9),  

(2 –4, 2–12, 2–10, 2–9), (1)] 
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Figure 9. Performance of NANN with one, two and  

three history points (Zhang, 1996). 
 
create a unique mapping between the input and output to the neural network.  
The variable used in this case is given in the following equation: 

 
 Kn = 1T

n-1 Mn 
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This parameter strictly guarantees one-to-one mapping only in one-dimension.  
However, our experience shows that it is also effective in multi-dimension.  The 
variable Kn is the sum of two quantities.  The two parts of the hysteretic variable 
are described in the following equations and illustrated in Figure 10. 

 
 
 
 
 
 
 

The first variable Nn uniquely helps locate the point on the stress-strain diagram 
or the current state of stresses and strains.  The second variable �Kn indicates the 
direction of the increment of strains. 
 

  
 
 
 
 
 
 

Figure 10.  Hysteretic variables on one-dimensional stress-strain diagram. 
 

These two variables have been found to be effective in the modeling of the 
hysteretic behavior of materials. They can be used on their own, or in 
combination with one or two history points. A typical neural network material 
model capable of learning the hysteretic behavior of materials is shown in 
Figure 11 and its application is shown in Figures 12 and 13. The input to the 
neural network consists of the current stresses and strains, hysteretic variables, 
and the strains at the end of the increment. The output is the stresses at the end 
of the increment. 

 

�Kn = 1T
n-1 �Mn 

Nn = 1T
n-1 Mn-1 

Kn = Nn + �Kn 

�

$

�

$n 1�$ n$

n 1��

n n 1 n 1� �? � � $

, n n 1 n$ �#O � � #$

�

$

�

$n 1�$ n$

n 1��

n n 1 n 1� �? � � $

, n n 1 n$ �#O � � #$



www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 215

 
 

Figure 11. Neural network for hysteretic behavior of materials [Yun, 2006] 
 
 
 

 
 

Figure 12. FE model of beam column connection subjected  
to cyclic force [Yun 2006]. 
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Figure 13. Performance of the training neural network material model with 
hysteretic variables (Yun 2006, Yun, Ghaboussi, Elnashai, 2008a). 
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6.3 Autoprogressive Algorithm and Self-learning Simulations (SelfSim) 

In the early applications of neural networks in constitutive modeling they were 
trained directly with the data from material tests. Constitutive modeling from the 
material tests is an inverse problem.  In this case the input (applied stresses) and 
the output (measured strains) are known and the system that in this case is the 
constitutive model needs to be determined. In the conventional mathematically 
based methods this is done by developing a mathematical model that closely 
matches the observed behavior. Of course, the mathematical models have to 
conform to the conservation laws of mechanics. As we have discussed before, in 
using neural networks we concentrate on the information on the material 
behavior contained in the data generated from the material tests. The learning 
capabilities of neural networks provide the means for extracting and storing the 
information on material behavior directly from data generated by the material 
tests. 

The advantage of extracting the information on the material behavior 
directly from the experimental results is that there is no need for idealization. 
Moreover, since the data comes from the material itself, it is safe to assume that 
it conforms to the conservation laws of mechanics. There are also disadvantages 
that became clear very soon after the initial applications. Material tests are 
designed to represent a material point.  Consequently, the state of stresses and 
strains within the sample must be as uniform as possible. The sample is 
subjected to a stress path and all the points within the sample are assumed to 
follow the same stress path.  Therefore, the data generated from a material test 
has information about the material behavior only along that stress path. The data 
from one material test is not sufficient to train a robust neural network material 
model.  Information on the material behavior over the whole region of interest in 
stress space is needed to train a robust neural network constitutive model with 
generalization capabilities.  This requires a series of specially designed material 
tests with stress paths that reasonably cover the region of interest in the stress 
space.  This is not practical in most cases. 

Material tests are not the only source of information on the behavior. There 
are many other potential sources of data that contain information on material 
behavior.  The measured response of a system subjected to a known excitation 
contains information on the constitutive behavior of the material (or materials) 
in that system.  An example is a structural test; the measured displacements of a 
structure that is subjected to known forces contain information on the 
constitutive properties of the materials within the structure. This is a more 
complex inverse problem than the material tests; the forces and displacement are 
the known input and output of the system and the constitutive properties of the 
material within the structure are to be determined.  Unlike material tests, which 
ideally induce a uniform state of stress within the sample, structural tests induce 
non-uniform states of stresses and strains within the sample.  Since points in the 
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specimen follow different stress paths, a single structural test potentially has far 
more information on the material behavior than a material test in which all the 
points follow the same stress path. 

Extracting the information on the material properties from structural tests is 
an extremely difficult problem with the conventional mathematically based 
methods.  This is probably the reason why it has not been attempted in the past.  
On the other hand, soft computing methods are ideally suited for this type of 
difficult inverse problem.  The learning capabilities of a neural network offer a 
solution to this problem.  Autoprogressive algorithm is a method for training a 
neural network to learn the constitutive properties of materials from structural 
tests(see Ghaboussi, Pecknold, Zhang and HajAli,1998).  

An autoprogressive algorithm is applied to a finite element model of the 
structure being tested.  Initially a neural network material model is pre-trained 
with an idealized material behavior. Usually, linearly elastic material properties 
are used as the initial material model.  Sometimes it may be possible to use a 
previously trained neural network as initial material model. The pre-trained or 
previously trained neural network is then used to represent the material behavior 
in a finite element model of the specimen in the structural test. The 
autoprogressive method simulates the structural test through a series of load 
steps.  Two analyses are performed in each load step. The first analysis is a 
standard finite element analysis, where the load increment is applied and the 
displacements are computed.  In the second analysis the measured displacements 
are imposed. The stresses from the first analysis and the strains from the second 
analysis are used to continue the training of the neural networks material model.  
The stresses in the first analysis are closer to the true stresses since the first 
analysis is approaching the condition of satisfying the equilibrium. Similarly, the 
strains in the second analysis are closer to the true strains since it is approaching 
the condition of satisfying compatibility.  A number of iterations may be 
required in each load step.  The retrained neural network is then used as the 
material model in the next load step. The process is repeated for all the load 
steps and this is called one “pass”. Several passes may be needed for the neural 
network to learn the material behavior. At that point, the two finite element 
analyses with the trained neural network will produce the same results. 

6.4 An Illustrative Example: A Truss Arch  

The autoprogessive algorithm is illustrated with a three-dimensional truss 
example, shown in Figure 14. This structure represents the left half of a 
symmetric truss arch. The nodes at the right hand side have symmetric boundary 
conditions and the nodes at the left hand side are fixed, representing the fixed 
support condition.   

It is assumed that the members of the truss are made from a hypothetical 
material with nonlinear stress-strain relations shown in Figure 15. The objective  
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Figure 14. Three-dimensional truss example 
 
of autoprogressive algorithm in this example is to train a neural network to learn 
the nonlinear stress-strain relation shown in Figure 15 from the result of a 
structural test. In this case the structural test consists of applying a single force P 
at one node and measuring the displacement at the same point along the 
direction of the applied load, as shown in Figure 14. The experiment is 
simulated by analyzing the structure. The force-displacement curve from the 
simulated structural test is shown in Figure 16. 

 
Figure 15. Assumed member stress-strain relation 
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Figure 16. Force-displacement curve from simulated structural test. 

 
Initially, the neural network is trained with linearly elastic behavior within a 

narrow range of stresses and strains. This neural network is used in the self-
learning simulation. The load P and the displacement U are applied in 
increments in the first and second finite element analyses (FEM-A and FEM-B) 
and the results are used to retrain the neural network material model. A total of 
10 passes are performed. At several stages during the self-learning simulation, 
the partially trained neural network is used in a forward analysis simulation of 
the structural test. Force-displacement relations at six stages during the self-
learning simulation are shown in Figure 17. Show in Figure 18 is the process of 
the gradual learning of the material behavior.  Points in this figure represent the 
state of stress and strain in the structural members.  After 10 passes the neural 
network has learned the material behavior so that the forward analysis with the 
trained neural network replicates the simulated structural test with sufficient 
accuracy. 
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Figure 17. Force-displacement relations in the forward analyses with the neural 
network material model at six stages during the autoprogressive training in the 

self-learning simulation 
 
 
 

pass 0 step 0

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 2 step 6

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 3 step 8

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 4 step 12

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 5 step 15

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 10 step 30

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad



www.manaraa.com

222 J. Ghaboussi

 
 

Figure 18. Stress-strain relations in the forward analyses with the neural 
network material model at six stages during the autoprogressive training  

in the self-learning simulation 

6.5 Autoprogressive Algorithm and Self-learning Simulations in 
Structural Mechanics and in Geo-mechanics 

The problem of determining the constitutive properties of material from 
structural tests is more relevant with modern composite material. It is often not 
feasible to perform comprehensive sets of material tests on composite materials. 
However, structural tests on composite materials are far more common. An 
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application of the Autoprogressive method to a composite plate with a hole is 
presented in paper by Ghaboussi Pecknold Zhang and HajAli (1998).   

The Autoprogressive algorithm has been successfully applied in self-
learning simulations in deep excavations in urban areas (see Hashash Marulando 
Ghaboussi and Jung 2003, 2006), in modeling of the behavior of geo-materials 
from non-uniform tests (see Sidarta and Ghaboussi, 1998; Fu Hashash Jung and 
Ghaboussi, 2007; Hashash Fu Ghaboussi Lade and Saucier, 2009), in time 
dependent behavior of concrete in segmented long span bridges (see Jung 
Ghaboussi and Marulando, 2007), and in modeling of hysteretic behavior of 
beam-column connections from the results of dynamic tests on frames (see Yun 
Ghaboussi and Elnashai 2008b, 2008c).  

6.6 Self-learning Simulations in Bio-medicine 

Another broad area of application self-learning simulation with autoprogressive 
algorithm is in bio-medicine and in bio-medical imaging. Direct in-vivo 
experiments to determine constitutive properties of soft tissue are not currently 
possible.  However, minimally invasive in-vivo methods for measuring the 
system response of soft tissue are possible. Self-learning simulation has been 
successfully applied in determination of the constitutive properties of the human 
cornea (see Kwon, 2006; Kwon Ghaboussi Pecknold and Hashash 2008, 2009). 
The same method is also used in the accurate determination of Intra-ocular 
Pressure (IOP). Accurate determination of IOP and constitutive properties of the 
human cornea can be used in virtual laser surgery to individualize and optimize 
the laser surgery procedure. 

6.7 Self-learning Simulations in Complex Systems 

The autoprogressive method has wider applications than material modeling from 
structural tests.  System response is dependent on the properties of its 
components.  In many cases it is not possible to determine the properties of the 
components of the systems through experiments; such experiments many not be 
possible.  However, in most cases it is possible to determine the input/output 
response of the system.  The measured input and output of any system can be 
used to develop a neural network model of the behavior of its components.  The 
requirement for the application of autoprogessive algorithm is that a numerical 
modeling of the system be feasible so that the simulation of system response to 
the input can be performed in the dual analyses similar to the self-learning 
simulation in structural tests.  The potential application of the autoprogressive 
algorithm in characterization of the components of complex systems is described 
in paper by Ghaboussi, Pecknold and Zhang, 1998. 
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7. Inverse Problems in Engineering 
Most engineering problems are inherently inverse problems. However, they are 
seldom solved as inverse problems. They are only treated as inverse problems 
on the rare occasions when they can be formulated as direct problems in highly 
idealized and simplified forms. Nearly all the computer simulations with hard 
computing methods, including finite element analyses, are direct or forward 
problems, where a physical phenomenon is modeled and the response of the 
system is computed. There are two classes of inverse problems. In one class of 
inverse problems the model of the system and its output are known. The inverse 
problem is then formulated to compute the input which produced the known 
output.  In the second class of inverse problems the input and the output of the 
system are known, and the inverse problem is formulated to determine the 
system model. This class of inverse problems is also referred to as system 
identification. 

An important characteristic of the inverse problems is that they often do not 
have mathematically unique solutions. The measured output (response) of the 
system may not contain sufficient information to uniquely determine the input to 
the system. Similarly, the measured input and response of the system may not 
contain enough information to uniquely identify the system, and there may be 
many solutions which satisfy the problem. 

Lack of unique solutions is one of the reasons why the mathematically 
based methods are not suitable for inverse problems. On the other hand, 
biological systems have evolved highly robust methods for solving the difficult 
inverse problems encountered in nature. In fact, most of the computational 
problems in biological systems are in the form of inverse problems.  The 
survival of the higher level organisms in the nature depends on their ability to 
solve these inverse problems. The examples of these inverse problems are 
recognition of their food, recognition of threats, and paths for their movements. 
Nature's basic strategy for solving the inverse problems is to use imprecision 
tolerant learning and reduction in disorder within a domain of interest. 

A training data set can be used to train a forward neural network or an 
inverse neural network. The input and output of the inverse neural network are 
the same as the output and input, respectively, of the direct neural network. This 
was demonstrated in the first application of neural networks in material 
modeling (see Ghaboussi, Garrett and Wu, 1991). 

When unique inverse relationship does exist, then both neural networks and 
mathematically based methods can be used to model the inverse mapping.  
However, when the inverse mapping is not unique, modeling with the 
mathematically based methods becomes increasingly difficult, if not impossible. 
On the other hand, neural network based methods can deal with the non-unique 
inverse problems by using the learning capabilities of the neural networks. In 
fact, this is how the biological systems solve the inverse problems, through 
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learning.  Even if mathematically unique inverse mappings do not exist, 
approximate (imprecision tolerant) inverse mappings may exist over limited 
regions of domain and range.  Neural networks use learning to establish 
reasonable admissible inverse mappings that are valid over limited ranges of 
these variables.   

In the previous sections the inverse problem of constitutive modeling was 
presented, including the autoprogressive algorithm in self-learning simulation.  
Other examples of application of soft computing methods to inverse problems in 
engineering from the work of the author and his co-workers will be briefly 
described in this section.  More details on these applications are available in the 
references cited. 

 
7.1 Inverse Problem of Structural Control 

The objective of structural control is to minimize the motion of the structure 
through one or more actuators that can perform various functions such as apply 
forces to the structure or change the properties of some structural components.  
The controller receives input signals (such as measured motion of the structure) 
and sends a output signals to the actuators to accomplish the control objective.  
This is a task that can be performed by a trained neural network.  The method 
for training of the neuro-controller is not often obvious. Depending on the 
feasibility of the type of data acquisition, the training of the neural controller can 
be accomplished in different ways. The neural network is learning the control 
method – in the context of inverse problems it is learning the system model from 
the input and output. However, in most cases the output that is the desired 
actuator signal is not known. 

In the first application of neural networks in structural control (see Nikzad, 
Ghaboussi and Paul, 1996), it was possible in an experiment to send signals to 
the actuator and measure the system response. This data was used to train an 
inverse neural network so that the trained neural network could output a actuator 
signal to counter the response of the uncontrolled system. 

It is not always possible to perform experiments to measure the structural 
response to actuator signals.  In that case, the output of the neural controller is 
not known but the desired response of the structure is known.  A new method for 
training of the neuro-controller was developed that involved the use of a pre-
trained emulator neural network (see Ghaboussi and Joghataie, 1995; Bani-Hani 
and Ghaboussi, 1998a, 1998b; Bani-Hani  Ghaboussi and Schneider, 1999a, 
1999b). 

The new method was verified in a number of experiments on control of 
structural response when the structure is subjected to earthquake ground motion.  
The results showed that the neural networks can be successfully used in 
structural control. Moreover, the neuro-controller can also learn to compensate 
for control system time-delays.  
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The inverse problem of structural control can also be solved by genetic 
algorithm (see Kim and Ghaboussi, 1999; Kim, 2000). In this case the controller 
evolves to satisfy the control criterion. 

7.2 Inverse Problem of Generating Artificial Spectrum Compatible 
Accelerograms 

 
Given an earthquake accelerogram, it is possible to compute its Fourier 
spectrum or response spectrum. This can be considered the forward problem.  
We consider the two inverse problems in this case; the input being either the 
Fourier spectrum or the response spectrum and the output being the earthquake 
accelerogram. Given a Fourier spectrum it is possible to uniquely determine the 
earthquake accelerogram that produced it.  The reason for the uniqueness in this 
case is that no information is lost in the forward problem of going from the 
accelerogram to the Fourier spectrum. On the other hand, information is lost in 
the forward problem of going from accelerogram to response spectrum.  
Therefore, given a response spectrum, it is not possible to uniquely determine 
the accelerogram that produced it. This problem is of practical interest, since 
earthquake response spectra are used in design. 

The inverse problem of generating artificial earthquake accelerograms from 
design response spectra is very similar to the inverse problem of recognizing 
faces or voices. Although unique solution does not exist, we learn to recognize a 
limited number of faces and voices.  The same learning strategy can be used in 
generating artificial earthquake accelerograms. The author and his co-workers 
have developed a neural network based method for generating artificial 
spectrum compatible accelerograms (see Lin, 1999; Ghaboussi and Lin, 1998; 
Lin and Ghaboussi, 2001). The objective is to train a neural network with an 
ensemble of recorded earthquake accelerograms and their computed response 
spectra.  The input to the neural network will be a vector of the discretised 
ordinates of the response spectrum. The output of the neural network is the 
vector of discretised ordinates of the real and imaginary parts of the Fourier 
spectrum.  As mentioned earlier, the accelerogram can then be uniquely 
computed from the Fourier spectrum. 

The neural networks are trained in two stages. First, a Replicator Neural 
Network (RNN) is trained to compress the information content of the Fourier 
spectra of the accelerograms in the training data sets. As shown in Figure 19 the 
input and output of the RNN are the same.  The middle hidden layer of RNN has 
few nodes. The activations of the middle hidden layer nodes represent the 
compressed data. It is obvious that the RNN is performing two distinct functions 
of encoding and decoding in such a way that it can be separated into two neural 
networks.  The lower part of RNN (input layer to the middle hidden layer) can 
be considered as an encoder neural network. Similarly the upper part of the 
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RNN (from the middle hidden layer to the output layer) can be considered as a 
decoder neural network.  

The upper part of the trained RNN is used in the accelerogram Generator 
Neural Network (AGNN) shown in Figure 20. The lower part of the AGNN is 
then trained with a number of recorded earthquake accelerograms. The 
methodology has been extended to develop and train stochastic neural networks 
which are capable of generating multiple accelerograms from a single input 
design response spectrum (see Lin, 1999; Lin and Ghaboussi, 2001). 
 

 
 

Figure 19. Replicator neural network 
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Figure 20. Composite Accelerogram Generator Neural Network 
 
7.3 Inverse Problem of Condition monitoring and damage detection in 

bridges 

Another obvious class of inverse problems is the condition monitoring and 
damage detection from the measured response of the structure.  Soft computing 
methods again offer unique opportunities for dealing with this class of difficult 
problems. The first application of neural networks in structural condition 
monitoring was reported in [Wu Ghaboussi and Garrett, 1992]. It was shown 
that it is possible to train a neural network to learn the structural response when 
various states of damage, including no damage, are present in the structure. The 
trained neural network was shown to be capable of indicating the location and 
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extent of the damage from the structural response during an earthquake. Neural 
networks have also been applied in engineering diagnostics (see Ghaboussi and 
Banan, 1994) and in damage detection and inspection in railways (see 
Ghaboussi, Banan, and Florom, 1994; Chou, Ghaboussi, and Clark, 1998).  

Application of genetic algorithm in bridge damage detection and condition 
monitoring was reported in papers by Chou (2000), Chou and Ghaboussi (1997), 
(1998), (2001). The bridge condition monitoring is formulated in the form of 
minimizing the error between the measured response and the response computed 
from a model of the bridge and in the process the condition of the bridge is 
determined. The methodology was shown capable of determining the condition 
of the bridge from the ambient response under normal traffic load. The 
methodology was further refined by Limsamphancharon (2003). A form of fiber 
optic sensing system was proposed for monitoring of the railway bridges under 
normal train traffic loads. A practical method was proposed for detecting the 
location and size of fatigue cracks in plate girders in railway bridges.  A new 
Dynamic Neighborhood Method genetic algorithm (DNM) was proposed (see 
Limsamphancharon, 2003) that has the capability of simultaneously determining 
multiple solutions for a problem. DNM was combined with a powerful genetic 
algorithm called Implicit Redundant Representation GA (IRRGA) (see Raich 
and Ghaboussi, 1997a) which was used in bridge condition monitoring. 

7.4 Inverse Problem of Creative Structural Design 

Engineering design is probably the most fundamental engineering task. If we 
stay in the domain of structural engineering and consider the example of 
structural design, we can define the inverse problem as shown in Figure 21.  The 
input is loads and design specifications, and the output is the code requirements, 
safety, serviceability and aesthetic. The objective is to determine a structural 
design that can carry the loads and meet the design specification while satisfying 
the output. If we pose this as an inverse problem, the methodology should 
directly seek a solution. Such a methodology currently does not exist. Instead, 
this problem is solved through a series of trial and errors; each trial constituting 
a forward problem. 
 
 
 
 

Figure 21. Inverse problem of structural design 
 
Similar to the other engineering inverse problems, engineering design does 

not have a unique solution. A truly unconstrained inverse problem of 
engineering design is a search in an infinite dimensional vector space. There are 
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no optimum solutions and there are many solutions that will satisfy the input and 
output of the problem. As we constrain the problem, we also reduce the 
dimensions of the vector space where the search for the design takes place.  A 
fully constrained design problem is reduced to an optimization problem that is a 
search in a finite dimensional vector space. Mathematically based hard 
computing methods have been used in optimization problems. It is far more 
difficult for the hard computing methods to deal with the unconstrained design 
problems. 

As an example, we will consider the problem of designing a bridge to span 
a river. Soft computing methods can be used to solve this problem in a number 
of ways. The spectrum of all possible formulations is bound by the fully 
unconstrained design problem at one extreme and the fully constrained 
optimization problem at the other extreme. 

In this case the fully uncontained design problem can be defined as 
designing the bridge to satisfy the design specifications and code requirements, 
with no other constraints. The methodology deployed in this open ended design 
will have to determine the bridge type, materials, bridge geometry and member 
properties. The bridge type may be one of the known bridge types or it may be a 
new, as yet unknown, bridge type and material. 

In the fully constrained optimization problem the bridge type, configuration 
and geometry are known and the methodology is used to determine the member 
section properties. It is clear that this is an optimization problem, and it is a 
search in a finite dimensional vector space. This problem has at least one, and 
possibly multiple optimum solutions. 

The fully unconstrained design takes place in a high dimensional vector 
space.  If the search is in an infinite dimensional vector space, then there may be 
an infinite number of solutions and no optimum solution. As we constrain the 
problem, we reduce the dimension of the space where the search for the solution 
takes place. In the limit we have the fully constrained optimization problem. 

Genetic algorithm and evolutionary methods have been extensively used at 
the lower end of this spectrum, in the fully constrained optimization problems.  
However, genetic algorithm is very versatile and powerful; it can be formulated 
for use in the unconstrained design problem. Two examples of the application of 
genetic algorithm in the unconstrained design are given in (Shrestha, 1998; 
Shrestha and Ghaboussi, 1997; 1998) and (Raich, 1998, Raich and Ghaboussi, 
1997a, 1997b, 1998, 2000a, 2000b, 2001). 

In (Shrestha 1998; Shrestha and Ghaboussi 1997, 1998) a truss is to be 
designed for a span to carry a given load. The only constraint is that the truss has 
to be within a rectangular region of the space with a horizontal dimension of the 
span and a specified height. No other constraints are applied. A special 
formulation is developed for this problem that allows the evolution of nodes and 
members of the truss. Creative designs evolve after about 5000 generations. The 
evolution goes through three distinct stages. In the first stage of about 1000 
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generations, search for a truss configuration takes place.  In this stage, the cost 
and the disorder in the system remain high. The second stage begins with the 
beginning of finding of a possible solution and it is characterized by a rapid 
decline in the cost and the disorder. In the third stage the configuration is 
finalized and the members are optimized. The cost and the disorder decline 
slowly in the third stage. Since the configuration changes little in the third stage, 
genetic algorithm is in fact solving an optimization problem. 

In the above mentioned papers by Raich and Raich and Ghaboussi genetic 
algorithm is formulated for solving the unconstrained design problem of a 
multistory plane frame to carry the dead loads, live loads and wind load, and to 
satisfy all the applicable code requirements. The only constraints in this problem 
are the specified horizontal floors and the rectangular region bounding the 
frame.  Except the horizontal members supporting the floors, no other 
restrictions were imposed on the location and orientation of the members. A 
special form of genetic algorithm that allows for implicit representation and 
redundancy in the genes was developed and used in this problem (see Raich and 
Ghaboussi, 1997a). It is important to note that since the problem has multiple 
solutions, each time the process starts from a random initial condition it may 
lead to a completely different solution. 

This formulation led to evolution of highly creative and unexpected frame 
designs. In some designs the main load carrying mechanism was through an arch 
embedded in the frame, while in others it was through a truss that was embedded 
in the frame. It is known that arches and trusses are more efficient load carrying 
structures than the frames. 

In both of the examples cited above, genetic algorithm was formulated and 
used as a direct method of solving the inverse problem of design, not as a 
method of optimization. As was mentioned earlier, design includes optimization 
in a wider search for solution. Both examples also demonstrate that evolutionary 
methods are capable of creative designs. One of the objectives of undertaking 
these research projects was to find out whether evolution, in the form used in 
genetic algorithm, was capable of creative design. The answer was a resounding 
affirmative. 

An important point in the two examples of engineering design was the role 
of redundancy in genetic codes.  Although simple genetic algorithm was used in 
the first example, the formulation was such that it resulted in large segments of 
genetic code being redundant at any generation.  In the second example Implicit 
Redundant Representation Genetic Algorithm (see Raich and Ghaboussi, 1997) 
was used, and this algorithm allows redundant segments in the genetic code. 
Redundancy appears to have played an important role in the successful 
application of genetic algorithm to these difficult inverse problems. 

IRRGA has also been applied in form finding and design of tensegrity 
structures (see Chang, 2006). The stable geometry of a tensegrity structure is the 
result of internal tensile and compressive member forces balancing each other 
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and maintaining the geometry of the structure. Some forms of tensegrity 
structures are well known. Generally, finding the form of tensegrity structures is 
a difficult task and no methods are currently available for form finding and 
design of this class of structures. IRRGA was successfully applied to this task 
and details are available in (Chang, 2006). 
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and maintaining the geometry of the structure. Some forms of tensegrity 
structures are well known. Generally, finding the form of tensegrity structures is 
a difficult task and no methods are currently available for form finding and 
design of this class of structures. IRRGA was successfully applied to this task 
and details are available in (Chang, 2006). 
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Abstract. The chapter discusses selected problems of applications of Stan-
dard (deterministic) Neural Networks (SNN) but the main attention is fo-
cused on Bayesian Neural Networks (BNNs). In Sections 2 and 3 the prob-
lems of regression analysis, over-fitting and regularization are discussed
basing on two types of network, i.e. Feed-forward Layered Neural Network
(FLNN) and Radial Basis Function NN (RBFN). Application of Principal
Component Analysis (PCA) is discussed as a method for reduction of input
space dimensionality. In Section 4 the application of Kalman filtering to
learning of SNNs is presented. Section 5 is devoted to discussion of some
basics related to Bayesian inference. Then Maximum Likelihood (ML) and
Maximum APosterior (MAP) methods are presented as a basis for formula-
tion of networks SNN-ML and SNN-MAP. A more general Bayesian frame-
work corresponding to formulation of simple, semi-probabilistic network
S-BNN, true probabilistic T-BNN and Gaussian Process GP-BNN is dis-
cussed. Section 6 is devoted to the analysis of four study cases, related
mostly to the analysis of structural engineering and material mechanics
problems.

1 Introduction

Artificial Neural Networks belong to a group of “biologically” inspired methods
together with fuzzy systems and genetic algorithms (or, more generally, evolution-
ary algorithms, systems and strategies). These methods are sometimes called soft

Authors would like to acknowledge support from the Polish Ministry of Science and Higher Edu-
cation Grant “Application of Bayesian neural networks in experimental mechanics of structures and
materials”, No. N506 1814 33.
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computing methods because these methods can also have such features as adap-
tivity and flexibility to find optimal solutions. That is why soft methods can also
be called methods of computational artificial intelligence, see Jang et al. (1997).
ANNs have turned out to be an especially efficient tool in the analysis of classi-
fication and regression problems, i.e. problems which are commonly analyzed in
various engineering applications.

ANNs were presented at two CISM Courses devoted either to the analysis and
design of structures, see Waszczyszyn (1999), or to the identification problems of
structural engineering, see Waszczyszyn and Ziemiański (2005). The correspond-
ing papers on regression problems can be briefly characterized as the mapping of
input data onto predicted output variables.

The presented Chapter is called “Selected Problems of ANN Development”
and it is, in fact, a continuation of two previous cycles of lectures presented in
Udine at CISM Advanced Courses in 1998 and 2002. From the viewpoint of se-
lected topics, the Chapter deals first with some problems of standard, deterministic
neural networks. Attention is focused on Feed-forward-Layered Neural Network
(FLNN) and Radial Basis Function NN (RBFN). These networks are suitable for
the analysis of regression problems which are discussed in this Chapter.

FLNN and RBFN are sometimes called standard networks since they give a
numerical solution in form of real numbers, and computations are carried out on
the base of the error minimizing paradigm, see Tipping (2004). Fulfilling this
paradigm needs the application of various learning methods which explore differ-
ent iterative techniques. In a special case of linear in weights RBFN the learning
method can be reduced to the solution of a linear set of algebraic equations. Be-
cause of the minimization paradigm also the networks trained by means of stochas-
tic Kalman filtering are treated as standard, deterministic networks.

The second part of the Chapter is devoted to probabilistic networks supported
on the Bayesian inference paradigm. This approach explores the Bayes’ theorem,
which in general does not require iterative techniques, and is based either on the
integration over weights (marginalization principle) or on the random process in-
terpolation method.

The Bayesian approach was introduced to neural networks quite early due to
Buntine and Weigend (1991) but mainly the paper by MacKay (1992) and report
written by Neal (1992) inspired new research and applications. After the first
book on BNNs was written by Bishop (1995) many new books and state-of-the-
art papers were published. From among them we quote here only selected books
and reviews which seem to be accessible for students and engineers and useful for
extending their interest in BNNs. In recent years there were published books by
MacKay (2003), 6-th printing in 2007, Bishop (2006), Rasmussen and Williams
(2006). From among many reviews those by Lampinen and Vehtari (2001) and
Tipping (2004) are especially worth recommending for reading.
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In the frame of the Bayesian framework the Bayesian Neural Network (BNN)
was formulated in which the standard, deterministic network is used as a compu-
tational interface. In this Chapter, we apply only FLNN and RBFN networks to
carry out computation needed to explore the Bayesian approach and improve the
analysis of SNN networks. BNN are now in the centre of research interest so their
foundations are briefly discussed in the Chapter.

Special attention is paid to discussions of computational methods needed in the
Bayesian approach. This concerns a deterministic, in fact, method of Maximum
Likelihood, which fully corresponds to the minimization method of Least-Square
error. A much more general method of the Maximum a Posterior is extensively
discussed as well. What seems especially interesting is the application of the Max-
imum Marginalized Posterior as a new criterion for neural network design.

In the Chapter we focus on selected problems concerning standard neural net-
works. We discuss in short the basic problem of the over-fitting phenomenon and
a possibility of controlling it by the weight-decay regularization method. Then we
focus on design of neural networks. The most important question of selection of
a neural network optimal model is discussed on the base of the cross-validation
method and from the viewpoint of a possibility of improvement of this technique
due to application of the Bayesian approach. We focus also on the possibility of
reduction of the input space dimensionality by the application of the Principal
Component Analysis.

From among extended literature devoted to neural networks we selected the
book by Haykin (1999) as a base for preparing the first part of the Chapter. The
second part devoted to the Bayesian neural network is based on the book by Bishop
(2006).

The content of subsequent Sections is mainly illustrated by the analysis of a
simple study case related to synthetic sinusoidal data. Without loss of general-
ity we limited our considerations to the analysis of one-dimensional regression
problem (single output) and D-dimensional input space. In the frame of such as-
sumptions the problems discussed in Sections 2-5 are illustrated in Section 6 on
examples of engineering applications, described in papers by the authors of the
Chapter and their associates.

2 Regression, Over-Fitting and Regularization

2.1 Regression function and regressive models

Regression corresponds to mapping of input variables x j onto output variables
which should be equal targets ti. For the sake of clarity we have assumed one
dimensional output for considering the definition of the target field of the output
data:

t x h x x (1)
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where: h x – scalar deterministic function, x – field of random noise, see
Figure 1a.

In what follows we focus on data completed of data points, corresponding to
events, observations or measurements, composed as pairs of input/output:

x t n N
n 1 xn tn N

n 1 (2)

The empirical knowledge, represented by set , is encoded in a numerical
model by the vector of parameters w, i.e. w so the predicted output (numeri-
cal approximation) is y x;w . On the base of these remarks two regressive models
are formulated, see Figure 1 taken from Haykin (1999), p.85.

Figure 1. Regressive models: a) Mathematical model, b) Physical (neural net-
work) model

Simple numerical models can be considered as deterministic algorithms or sys-
tems such as Artificial Neural Networks (ANNs) in which a computed solution
y xn;w is close to the target output tn, see Figure 1b:

tn y x;w en (3)

i.e. the computed outputs are perturbed by computational and model errors en. In
ANNs weight vector w is composed of synaptic weights and biases

w w W
i 1 (4)

where: W – dimension of the weight space.
The vector of weights is computed by means of the training (learning) pro-

cess applying a supervised learning method. Both the training processes and cor-
responding learning methods strongly depend on the regression model applied.
From among many models we focus on the linear models which are based either
on the polynomials or the Gaussian Radial Basis Functions.

2.2 Polynomial approximation of the regression function

Values of parameters wk can be computed applying the least square error function

E w
1
2

N

n 1
tn y xn;w 2 (5)
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Optimal values of weights wLS
k are computed by means of the Least Square

method (marked by super- or subscripts LS or LSM) which is related to searching
the minimal value of the function (5):

min
w

E w
E w

wk
0 for k 0 W 1 wLS (6)

For the sake of clarity let us assume a one-dimensional input space D 1 and
polynomial regression function of the K-th order

y x;w w0 w1x w2 x 2 wK x K
K W 1

k 0

wk x k (7)

Substitution of (7) to criterion (6) leads to the linear set of W K 1 equations
from which weights wi can be computed for i 1 W .

Let us discuss a simple numerical example of sinusoidal curve fitting, discussed
in many books and papers, cf. e.g. books by Bishop (1995, 2006).

Example 2.1 taken from Bishop (2006), p. 8. The mathematical regression func-
tion is the sin curve h x sin2 x for x 0 0 1 0 , marked in Figure 2 by the
broken line. Let us consider the case we observe N 10 noisy patterns, see Fig-
ure 2a.

It is assumed that the noisy patterns are generated by applying the curve h x as
the mean value perturbed by the Gaussian noise x with the probability distribu-
tion of the mean zero and variance 2, i.e. p n 0 2 , see (94). Assuming
polynomials (7) of the order K 1 3 9 the corresponding W 2 4 and 10 linear
equations of LS method were solved. The values of weights wLS

k K;N ln
are listed in Table 1.

The sequence of columns 2 – 5 corresponds to the transition from simple to
complex polynomial models. Very simple models K 0 1 are related to linear
regression which gives a declined line shown in Figure 2b. The third order polyno-
mial leads to quite good fitting to the mathematical regression curve h x sin2 x.

The polynomial of order K 9 matches exactly all the N 10 patterns but the
over-fitting phenomenon occurs. This means that the polynomial curve has great
oscillations and large values of curvatures.

The over-fitting phenomenon is a well-known problem of regression models
which should be formulated in-between the simple and complex models. In case
of simple models the accuracy of the approximation can be poor but the polynomial
curves are smooth (regular), cf. cases K 0 1 2 3. The increase of the number
of model parameters wk leads to models whose fitting the patterns is better but the
over-fitting can occur. What seems an acceptable model is one with K 3, which
corresponds to the polynomial of the third order, as shown in Figure 2c.
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Figure 2. a) Mathematical regression curve h x sin2 x used for generating
N 10 patterns; b, c, d) Fitting curves for polynomials of orders K 0 1 3 and 9

Table 1. Weights wk K;N ln , where = LS or PLS, for the polynomials of
order K = 0, 1, 3, 9, for the number of patterns N 10 and different values of the
regularization parameter

wk K= 0 K= 1 K = 3 K = 9
ln ln ln 7 81 ln = 0

1 2 3 4 5 6 7
w0 0.19 0.82 0.3 0.3 0.35 0.13
w1 1 27 8.0 232.4 4.74 0 05
w2 25 4 5321 8 0 77 0 06
w3 17.3 48568.3 31 97 0 05
w4 231639 3 3 89 0 03
w5 640042.3 55.28 0 02
w6 1061899 5 41.32 0 01
w7 1042400.2 45 95 0 00
w8 5576823 0 91 53 0 00
w9 125201.4 72.68 0 01
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The increase of parameter values causes an increase of the model complexity,
cf. Table 1. This affects the sensitivity of the model to prediction of new patterns,
which are placed in-between the training patterns.

There are many ways to control the over-fitting. One of them corresponds to
keeping the ratio of the number of patterns and model parameters N W 1. The
suggested values of the optimal ratio of N W is about 10, see e.g. Haykin (1999),
p. 207-209. The commonly used technique for controlling the over-fitting is the
weight-decay regularization technique.

Coming back to the illustrative example discussed above, the polynomial of
the ninth order is used for N 100 patterns. The Ratio N W 10 permits over-
coming the over-fitting and improves significantly the accuracy of approximation,
see Figure 3.

0 1

−1

0

1
9

x

t
N =
K =

100

Figure 3. Reduction of over-fitting by increase of data set to N = 100 and applying
approximation by polynomial of the order K = 9

2.3 Controlling the over-fitting by weight-decay regularization

Regularization can be involved by adding a penalty term to the error function
E w in order to discourage the weight parameters from reaching large values.
The penalty term corresponds to the weight-decay regularization function EW w .
The modified cost function takes the form of penalized error function EF w

EF w E w EW w
1
2

N

n 1
tn y xn;w 2

2
w 2 (8)

where: EF w – full form of the error cost function, EW w – weight-decay regu-
larization function, – regularization parameter, w 2 wTw w2

0 w2
1

w2
K – weight measure.

The optimality criterion (6) is used in the form:

min
w

EF w
EF w

wk
wk 0 for k 0 W 1 wPLS (9)
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The term wk stabilizes the solution of the linear set of algebraic equations,
where wPLS x ; corresponds to an optimal solution obtained by means of the
Penalized Least Square method (PLS).

The application of regularization parameter 0 enables cancelling the over-
fitting also for the case W N. The results of computation of wPLS are shown
for the ninth order of approximation polynomial, see columns 5–7 in Table 1. The
case ln corresponds to 0, which means vanishing of the regularization
term in the penalized error function (8). The values ln 7 81 and ln 0
give approximations obtained by the polynomial of orders K = 3, 0 but without
application of regularization, see Figures 2c,b, respectively.

Summing up this Point, what is worth emphasizing is the role of the weight-
decay regularization which permits the control of solution also for complex nu-
merical models without changing the training set.

2.4 ANNs for regression analysis

As mentioned in Section 1, feed-forward Artificial Neural Networks (ANNs) match
especially well the analysis of regression problems. In what follows we quote only
two types of ANNs with acronyms FLNN (Feed-forward Layered NN) and RBFN
(Radial Basis Function NN). These networks are of deterministic character and
they are sometimes called Standard Neural Networks (SNNs). Below, FLNN and
RBFN are briefly discussed for the case of the one hidden layer, vector input x and
scalar output y.

Feed-forward Layer Neural Network (FLNN). This type of ANN is known in
literature under different acronyms, see e.g. MLP (Multi-Layer Perceptron) in the
book by Haykin (1999), BPNN (Back-Propagation NN) in the lecture notes by
Waszczyszyn (1999) and FLNN (Feed-Forward Layered NN) in the other book by
Haykin (2001). In this Chapter acronym FLNN is used.

The simplest FLNN with H sigmoid neurons in a hidden layer and linear output
is shown in Figure 4a. The regression function takes the form

y x;w
H

h 0

w2
hFh

D

j 0
w1

h jx j (10)

where: x x j
D
j 0

D 1 – input vector, w wi
W
i 1

W – weight vector,
Fh – activation functions in the hidden layer.

The activation functions used in the network layers are shown in Figure 4a:
a) linear identity function for the output:

Fout v (11)
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b) bipolar sigmoid for the hidden layer

Fh
1 e av

1 e av where a 0 (12)

a) FLNN

+

b) RBFN

+

Figure 4. Basic Standard NNs: a) Feed-forward Layer Neural Network (FLNN),
b) Radial Basis Function Neural Network (RBFN)

The parameter a 1 is often taken in computations, cf. NN Toolbox by Demuth
and Beale (1998) but a 2 is also applied in case of the tanh activation function.
The potential corresponding to the layers is

1) v1
h

D

j 0
w1

h jx j b0

D

j 1
w1

h jx j (13)

2) vout b
H

h 1

Fh v1
h w2

h (14)

FLNN can be trained (learnt) by different learning methods, cf. e.g. Rojas
(1996), Waszczyszyn (1999). In the simplest learning method CBP (Classical
Back-Propagation) the weight vector is computed iteratively, applying gradients
gi of the cost function (5):

gi
E
wi

for i 1 W (15)

Radial Basis Function Neural Network (RBFN). The network RBFN, shown
in Figure 4b, has a layer of Radial Basis Functions (RBFs) k, which are used in
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the following linear regression function (in fact the regression problem is linear in
weights)

y x;w
K

k 0

wk k x 0 x b
K

k 1

wk k x (16)

In Figure 4b weight w0 is marked as a bias b and the corresponding RBF is
0 x 1.

The radial basis function, formulated in the feature space , has a general form

k x x k (17)

There are many various forms of RBFs. The polynomial RBF, applied for the
single input x and used in (7), can be written as:

k x xk (18)

From among many RBFs the most commonly applied is the exponential function:

k x exp
1
2

x k
T 1 x k (19)

where the centres are assumed to be k.
The function (19) is usually referred to as “Gaussian basis”, although it does

not fulfil the requirement of having a probabilistic interpretation. If we compare
(19) with the formula of Gaussian density (95) we see that instead of 2 D 2 1 2 1

normalization parameter equals 1 in (19).
In a general form (19) the RBF has D D 3 2 independent parameters

for x D. The simplest Gaussian RBF is obtained if the covariance matrix is
assumed to be a symmetric and isotropic matrix 1 s 2I, cf. discussion in
Point (5.2). The corresponding Gaussian RBF is:

k x exp
1

2s2 x k
T x k (20)

where s is sometimes called spread parameter which governs the spatial scale of
Gaussian RBF.

The function (20) has D 1 parameters and in case D 1, i.e. for the single
input the formula (20) takes the form:

k x exp
x ck

2s2 (21)

where sometimes the mean is denoted as a centre ck.
The regression function (16) is linear with respect to weights. So far for

K 1 N we can obtain the solution applying the linear regression method, fully
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corresponding to the LS method. Obviously, this method can be used for fixed
RBFs, i.e. for known means and spread parameters of the Gaussian RBFs.

A special case, called interpolation RBFN, see Haykin (1999), p.277, corre-
sponds to placing centres of RBFs in the points of the input set, i.e.

k ck xk (22)

where for W K 1 N the centres are selected using various optimization cri-
teria.

In a case of the interpolation RBFN the following vector (one-column matrix)
is formulated for the input pattern points:

W 1 0 xn
1 xn

K xn T (23)

where W K 1 N. The design matrix is composed of N rows vectors T
N 1 xn

corresponding to the number of patterns n 1 N and takes the following form:

N W

0 x1
1 x1

K x1

0 x2
1 x2

K x2

...
...

. . .
...

0 xN
1 xN

K xN

(24)

where:

nk k xn exp
1

2s2 tk y xn;w 2 (25)

Substituting the approximation (16) and vector (22) into (5) the following form
of Eq. (6) can be derived:

w t (26)

where is design matrix (24) and t tn N
n 1. The left-hand side multiplication

of this equation by T enables us to obtain the solution:

wLS
T 1 Tt †t (27)

where the Moore-Penrose pseudo-inverse matrix † is used and the subscript LS
is added in order to mark that solution (27) fully corresponds to that obtained by
the application of the Least Square method.

Solution (27) can be unstable so the minimizer with weight-decay (8) is sug-
gested to be used. This leads to the following solution

wPLS
T I 1 Tt (28)

The added subscript PLS corresponds to the Penalized LS method with regulariza-
tion parameter 0.
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Despite using nonlinear Basis Functions (especially RBFs) the formulation
supported on the LS method is called “linear-in-the-parameter w” formulation.

3 Some Problems of ANNs Design

3.1 Evaluation of regularization parameter

It was mentioned in Point 2.3 that the value of regularization parameter con-
trols the complexity of regression models. The network RBFN can be treated as
a representative model for illustrating the analysis of regression problems. Now
the problem of an optimal value of opt is analysed basing on the network error
analysis.

Example 3.1, taken from Tipping (2004). This example continues Example 2.1.
The same mathematical regression function h x sin2 x 0 0 1 0 is applied
but the randomly generated synthetic data set is extended to N 15 patterns,
marked in Figure 5 by black points. This set is called a training set. Additional 15
grain-points are also randomly selected and constitute a validation set.

Figure 5. Mathematical sinusoidal regression function and randomly selected syn-
thetic training and validation points. The regression function y x;w was com-
puted for ln 3 1 66 8 0
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In Figure 6 normalised errors E are shown, where are training
(learning) and validation sets, respectively. The training was performed for K 14
Gaussian RBFs (i.e. for W 15 network parameters) with centres placed in the
pattern points xn yn , randomly selected for the spread parameter s 0 2. The
training curve E is monotonically decreasing and for the log value ln
regularisation does not work.

The trained of RBFN with the weights wPLS was used for computation of
the validation curve E . The minimal value at this curve is reached for ln opt

1 66 and it estimates the optimal value of the regression parameter opt 5 3.

Figure 6. Error curves E and minimal value points at testing and validation
curves E and E , respectively

In Figure 6 the plot of the testing error is shown for the error measure E
y x;wPLS opt h x , computed for the mathematical regression function h x

sin2 x. The estimated optimal value ln opt 2 13 gives the testing error circa
E opt 0 04, much lower than the validation error E opt 0 25. In Fig-
ure 5 the corresponding validation fitting curves are shown, computed for selected
values of regression parameter ln 3 1 66 8 0.

The described method of searching opt corresponds to the classical cross-
validation method. The “true” value of opt is based on a known mathematical
regression function. It is rather a luxurious situation and in computational practice
only the search of opt is commonly carried out.

The estimated value of the regression parameter opt is strongly affected by a
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randomly selected validation set of patterns. This question is not so important for
large, statistically representative validation sets. The problem arises if the valida-
tion set is small or its selection from a known set of patterns significantly dimin-
ishes the size of the training set. That is why other error measures or approaches to
designing of ANNs are worth attention. This question is investigated in Point 5.6.

3.2 Some remarks on cross-validation

The idea of designing neural networks on the base of validation set patterns has
been discussed in many papers and books, cf. e.g. Masters (1993), Rojas (1996),
Twomey and Smith (1997), Haykin (1999). The main point of this approach is
that the validation set is selected from a larger set of known patterns and the
remaining subset is used as the training set, where , ,
see Figure 7.

The sets and should be statistically comparable. A set of neural networks
is learnt (trained) on the training set of patterns for various values of a parameter,
representative for the NN model in question. This parameter usually corresponds
to regularization parameter , the number of neurons H in FLNN or the number K
of RBFs in the network RBFN, cf. Figures 4. Let us focus on H as the representa-
tive NN parameter. After the training is carried out, the validation curve E ;H
can be computed for fixed values of H.

On the base of the plot of validation curve we can evaluate a minimal value of
validation error curve E ;H and deduce a corresponding optimal value of the
model parameter. Contrary to the training curve E ;H , which is monotonically
decreasing for the increase of model complexity, the validation curve E ;H has
a minimum at Hopt.

Figure 7. Sets of patterns in behaviour space

It is interesting that we can apply not only various model parameters but also
different error measures to evaluate the training and validation curves. For in-
stance, in a book by Bishop (1995), p. 11, two different measures MSE and RMS
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(cf. definitions in Appendix A1) were applied for the training and validation errors,
respectively. In Point 5.6 we apply another function, called the Bayesian marginal
likelihood whose maximal value can be used as a criterion for evaluation of Hopt.

After cross-validation the network is ready for operation and we should test
the trained network on a testing set of patterns , which should be independent
of the set , see Figure 7. It is a luxurious situation if the testing set corresponds
to the mathematical model, e.g. we know the mathematical regression curve h x
or if we could can formulate a noise-free set of patterns. Very often the set ,
if formulated via numerical simulations, gives so-called pseudo-empirical data
and the testing set is taken from observations or physical experiments. The only
requirement is that the set should be included in a set for which certain rules
are valid. This set should, of course, be referred to the behaviour space , see
Figure 7.

According to suggestions in some references, see e.g. Masters (1993), Twomey
and Smith (1997), it is reasonable (especially for a small set ) to retrain an opti-
mal network on the full set of known patterns . After such a process, verification
of the retrained NN on a testing set is invaluable.

All the above remarks take into account the main goal of ANNs formulation.
In the regression problems the trained networks should well predict values of the
network outputs in a larger space in which certain rules obey so the testing
process should approach us to the main goal of NNs designing, i.e. to have a good
prediction of trained NNs.

In many applications we have only a known pattern set . If the set is large
enough it can be split into S subsets of comparable size, see Figure 8. One of the
subsets is used for training and the remaining data are used for validation. This
process is executed S times. Such an approach was called the multi-fold cross-
validation method, see Haykin (1999), pp. 217-218.

Figure 8. Selection of training and validation sets after division S 4 times of a
known set into four subsets

In the often applied modification of multi-fold cross-validation a set of a fixed
number of training patterns is randomly selected S times and trained on the com-
plement to the known set . A quasi-optimal neural network then trained gives



www.manaraa.com

252 Waszczyszyn and M. Słoński

the training error for a predicted regression function y s x , close to the average
error computed for the committee of S networks.

In case the known data set is small and, particularly, scarce it may be ap-
propriate to apply leave-one-out technique in which one after the other patterns are
used for validation and the remaining patterns of the set complete the training
sets.

3.3 Design of ANNs with variable number of RBFs neurons

The ratio of K N, where: K – the number of RBFs, N – the number of training
patterns, influences the accuracy of network prediction at a fixed value of spread
parameter s, assumed in all the RBFs. The adaptive search of K and the application
of different values s is included by means of special procedures taken for instance
from the manual by Demuth and Beale (1998), called Neural Network Toolbox for
Use with MATLAB.

There are also extensively developed general types of RBFNs with the optimal
placement of RBF centres out of the data points, as well as searching of optimal
number of RBFs and their parameters, see Haykin (1999), Ch.5. Other approaches
are related to the application of Support Vector Machines (SVM) or Relevance
Vector Machines (RVM), cf. e.g. Haykin (1999)) and Bishop (2006). The main
idea of these approaches is discussed in Point 5.9.

The situation with the Feed-forward Layered Neural Networks (FLNNs) is
quite similar. We commonly apply the cross-validation procedure, recently also
with weight-decay regularization for controlling the over-fitting phenomena. In
case of one hidden layer the number of hidden neurons H can be used as a repre-
sentative model parameter. The cross-validation method is then commonly applied
and a minimum of the validation error E is used as a criterion of searching an
optimal value of the neuron number Hopt.

The application of the Bayesian framework enables us to extend our possibili-
ties to find the best models of neural networks. This question is discussed at length
in Point 5.6.

3.4 Data pre-processing and reduction of input space dimensionality

Scaling of input data. For most applications, it is necessary first to transform
the data into some new representation before network training. Scaling or normal-
ization is usually applied to have dimensionless data, often transformed to certain
ranges. Very often the selection of transformation is enforced by applied proce-
dures corresponding to physical interpretations, e.g. transformation of data from
time to spectral spaces.

Let us focus on standard transformations. Besides rescaling and normalization
onto the ranges 0 0 1 0 or 1 0 1 0 the input vector components x j can be
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transformed by means of statistical parameters of the data set:

x̂n
j

xn
j x̄ j

2
j

(29)

where: n 1 N – superscript which labels the patterns, j 1 D – subscript
of components in the input space D; x̄ j

2
j – mean and standard deviation of the

data set, defined by the following formulae:

x̄ j
1
N

N

n 1
xn

j (30)

2
j

1
N 1

N

n 1
xn

j x̄ j
2 (31)

The transformed variables x̂n
j have zero mean and unit variance 2

j (or unit
standard deviation j). In case of regression problems it is often appropriate to
apply transformation (29) to both input variables x j and computed output or target
variables y j and t j.

In practice input normalization ensures that all of the input variables are of
order of unity. In this case we expect that the weights of the first hidden layer can
also be of order of unity. Sometimes the normalization range 0 1 0 9 is applied
if the binary sigmoid is used as the activation functions in the network layers. The
use of this range might be important if such an activation function were applied in
the output neurons. That is not our case, since in this Chapter only linear, identity
outputs are used.

In case of RBFs with spherically symmetric basis functions, it is particularly
important to normalize the input vectors so that they span similar ranges. A simple
linear rescaling (29) treats all the vector components as independent. A more so-
phisticated linear rescaling is known in literature as whitening, see Bishop (1995),
pp. 299- 300.

For convenience, let us use the vector of input variables x x1 xD and
define the mean vector x̄ and covariance matrix S:

x̄
1
N

N

n 1
xn (32)

S
1

N 1

N

n 1

xn x̄ xn x̄ T (33)

The eigenvalue equation for the covariance matrix is in the form

Sq j jq j (34)
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which enables us to obtain the transformed input vector:

x̂n 1 2QT xn x̄ T (35)

where the eigenvector matrix Q and determinant of the diagonal eigenvalue matrix
are defined as:

Q q1 qD (36)
D

j 1
j (37)

Figure 9 shows that the original distribution of principal eigenvectors is trans-
formed to the whitened distribution since the covariance matrix (33) becomes the
unit matrix.

Figure 9. Transformation of input data set xn to whitened distribution

The discussed transformation of input variables is the base of the PCA (Prin-
cipal Component Analysis) method, which is commonly used for reduction of the
input space dimensionality. PCA is presented below.

Principal Component Analysis. The Principal Component Analysis (PCA) is one
of the commonly applied methods of reduction of input space dimension. PCA
enables us to avoid loss of relevant information which could accompany the di-
mensionality reduction.

PCA is a linear transformation (projection) of the input data xn xn
1 xn

D
D onto a lower dimensional space n n

1
n
K

K , where K D. The
goal of transformation is to maximize the variance of projected data or, equiv-
alently, to minimize the sum-of-squares of the projection errors, cf. Figure 10a
taken from Bishop (2006).

The principal components are measured along the axis j directed by the basis
vectors q j, cf. Figure 10b, which fulfill the criterion of orthonormality:

qiq j i j (38)
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Figure 10. a) Projection of points xn onto principal line j, b) Translation and
rotation of principal lines 1 and 2

where: i j – Kronecker delta.
Let us assume that the set of basis vectors is complete, that is

Q q1 qD (39)

so the input points can be exactly expressed by a linear combination of the basis
vectors

xn
D

j 1

n
j q j (40)

where:
n
j xn Tq j (41)

Let us approximate the input data involving a restricted number K D of vari-
ables corresponding to projection onto a lower-dimensional subspace, spanned on
the K first basis vectors q j for j 1 K. Thus, the approximate vector can be
written in the form

x̃n
K

j 1

zn
j q j

D

j K 1

b jq j (42)

Let us introduce the mean-square-error function

J
1
N

N

n 1
xn x̃n 2 (43)

The minimization of J with respect to coefficients zn
j and b j gives

zn
j xn Tq j b j x̄Tq j (44)
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The obtained coefficients (44) lead to zero value of the first part of sum (42),
i.e. for j 1 K and the error function is reduced to the formula

J
1
N

N

n 1

D

j K 1
xn Tq j x̄Tq j

2
D

j K 1
qT

j Sq j (45)

where S is the covariance matrix and x̄ is the mean of the data set

S
1
N

N

n 1

xn x̄ xn x̄ T x̄
1
N

N

n 1

xn (46)

The general solution for the minimization of J for arbitrary D and K D is
based on the eigen-analysis of equation (34). Since the covariance matrix is sym-
metric and positive defined, there are D positive eigenvalues which we put in order

1 2 D (47)

Applying the definition of the data set variance

2
j A2

j qT
j X XTq j qT

j XXT q j qT
j Sq j (48)

where: X x x̄ , and substituting (34) into (48) we obtain

2
j qT

j jq j jqT
j q j j (49)

Substituting (48) to (45) we can conclude that the PCA approximation error is

J
D

j K 1
j (50)

Now we can formulate the following PCA algorithm:

10 Formulation of the covariance matrix S for N given data points;

20 Computation of the eigenpairs j q j for the matrix S;

30 Computation of the relative values of the eigenvalues

m j
j

T
where T

K

j 1
j (51)

and estimation of a value K such that

K

j 1
m j adm error

D

j K 1
m j; (52)
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40 The formulated approximation enables us to compute the condensed data
(PC vectors)

n = QTxn
K

�
j=1

xn
jq j; (53)

50 PC vector can also serve for reconstruction of the original data

x̃n Q̃T n =
K

�
j=1

� n
j q j (54)

where: Q̃ – incomplete basis matrix

Q̃(D K) = q1 qK (55)

4 Applications of Kalman Filtering to Learning of ANNs

4.1 Sequential data and Kalman �ltering

So far we have focused on sets of events that were assumed to be independent and
identically distributed (i.i.d.). However, there are many observed phenomena for
which the data indicate correlations between events that are close in the sequence.
Such sequential data can be easily put in order if the events are related to a mono-
tonically increasing parameter. The physical time t is frequently used in dynamics
of systems but also any other pseudo-time parameters � of monotonically increas-
ing values can be used in the sequential data y(�).

In what follows we focus on discrete pseudo-time � k = 1 2 K which can
be used to put in order the events in the set of sequential data

y1 y2 yk 1 yk yk+1 yK (56)

which are correlated to each other. This feature can be expressed by the conditional
probability

p(y1 y2 yK) =
K

�
k=1

p(yk y1 yk 1)

= p(y1)p(y2 y1) p(yK y1 yK 1)

(57)

In many observations it is evident that the correlations between the current
event and the previous ones are relaxing, which is the basic assumption of Markov
models. In the theory of Markov chains correlations of the current and several pre-
vious m events are discussed. This can be related to Markov chains of m order. Let
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us illustrate this definition on the examples of the first and second order Markov
chains, see also Figure 11:

m 1 : p y1 y2 yK p y1

K

k 2

p yk yk 1 (58)

m 2 : p y1 y2 yK p y1 p y2 y1

K

k 3

p yk yk 1 yk 2 (59)

Figure 11. First and second order Markov chains

The idea to preserve only several time-delay terms is explored in the time se-
ries. The 1-st order Markov chain is assumed to formulate the Kalman filter. The
second assumption concerns the introduction of a state variable xk and formulation
of a model in the state space.

Let us assume that the state variable fulfils the assumption of the first order
Markov chain and the observable variables yk are i.i.d. but they depend on state
variables xk according to the following probabilistic formula, see Figure 12:

p x1 xK y1 yK p x1

K 1

k 2

p xk 1 xk

K

k 1

p yk yk 1 (60)

Figure 12. Sequences of state and observation variables

The model defined by (60) and Figure 12 was used in the formulation of the
Kalman filter which explores the recurrent formulae for computing vectors as map-
pings xk xk 1 and xk yk. The state and observation vectors xk and yk are
assumed to be random variables.
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The approach described above is a base for formulating the linear Kalman fil-
ter which is widely explored in the stochastic analysis of discrete linear dynamic
systems, see e.g., Haykin (1999).

There are many problems with the formulation of nonlinear Kalman filters, cf.
e.g. Haykin (1999, 2001), Korbicz et al. (1994). Just in this field the application of
neural networks has permitted overcoming some basic difficulties with formulating
so-called extended Kalman filters for the analysis of nonlinear discrete dynamic
systems, see Haykin (1999, 2001).

4.2 Kalman filtering and KF learning algorithms

The Kalman filtering algorithm is based on the modified first order Markov chain
model (60). In this model the NN weight vector w is assumed to be the state vec-
tor. This leads to two following stochastic equations:

1) process equation
wk 1 wk k (61)

2) observation (measurement) equation

yk hk xk wk ek (62)

where: hk – nonlinear regression function, xk – input vector, k, ek – process and
measurement noises of zero mean and covariance matrices

k ek 0 (63)

k l klQk ekel klRk (64)

GEKF algorithm. The Global Extended Kalman Filter is based on Eqs (61, 62)
and the application of the following recursive formulae, see Haykin (2001), p. 29:

Ak Rk HT
k PkHk

1

Kk PkHkAk

ŵk 1 ŵk Kkek

Pk 1 Pk KkHT
k Pk Qk

(65)

where: Ak – global scaling matrix;Kk – Kalman gain matrix; ŵk 1, ŵk – estimate
of weights of the system at updated steps k 1 and k; Pk – error covariance matrix;
Hk – measurement matrix; ek – error vector; Rk, Qk – measurement and covariance
noise matrices.

The names used in the acronym GEFK correspond to the form of Eqs (65). The
algorithm is called General since it is applied to the whole dynamic system gov-
erned by Eqs (65). The name Extended is used since the commonly used Kalman
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filters are linear but in (65) the measurement matrix Hk is nonlinear, i.e. more
precisely, it will be linearized at each step k.

The error vector ek is defined as the difference of the target and computed
output vectors tk and ŷk for the k-th presentation

ek tk ŷk (66)

In case of a single output network the components of the target and computed
vectors correspond to N variables at each observation step k

tk tn
k

N
n 1 ŷk ŷn

k
N
n 1 (67)

The algorithm attempts to find weight values that minimize a cost function, e.g.
the Mean Square Error, cf. definition (A1):

MSE
1

NK

K

k 1

eT
k ek (68)

The measurement matrix Hk is composed of derivatives of the network outputs
with respect to all trainable weight parameters

Hk
hk xk wk

w w ŵk (69)

The derivative matrix is obtained by separate back-propagation for each compo-
nent of the output vector ŷk.

In the algorithm the key role is played by the covariance matrix Pk

Pk wk ŵk wk ŵk
T (70)

In order to start with the recursion the initial estimate ŵ0 and the covariance
matrix P0 have to be assumed

ŵ0 w0 P0 w0 ŵ0 w0 ŵ0
T (71)

The selection of corresponding initial values was discussed at length by Haykin
(2001), pp. 32-33.

The algorithm GEKF, briefly discussed above, can be applied for training of
Feed-forward Layered Neural Networks (FLNNs), Figure 13a. The network has
two hidden layers and a linear output layer. The node activations for the l-th layer
are marked as signals vl

k. An additional input, called auto-regression input yk 1,
corresponds to the time delay. This input can accelerate the training process of the
network in the analysis of some engineering problems.
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Figure 13. Layered Neural Network (LNN) with autoregressive input yk 1,
a) Feed-forward LNN (FLNN), b) Recurrent LNN (RLNN)

The noise vectors k and ek stabilize the numerical procedures applied in train-
ing of the neural network. From among different possibilities of the matrices Rk

and Qk modelling the noises, a simple approach is related to assuming the diagonal
matrices and making their parameters depending on the epoch number s

Rk s exp s I Qk s exp s I (72)

where: – parameters of values estimated on the base of numerical ex-
periments. During the training process, the stabilization activity of matrices (72)
is great at the beginning of the training and then diminishes for the increase of s
values.

Due to neural networks it is possible to extend the Kalman filtering application
in the analysis of nonlinear problems. The corresponding algorithms are called
Extended KF, see Haykin (1999, 2001). The algorithm GEKF is based on the non-
linear behaviour of Eq. (62) in which the nonlinear observation function hk xk wk

is used. In the recursion formulae (65), the measurement matrix is used as an ap-
proximation updated at each step k.

DEKF algorithm. In order to diminish computation complexity and storage re-
quirements a decoupling of formulae (65) is carried out, see Haykin (2001), pp.
33-35. The decoupling concerns the introduction of g weight groups. In case
g W , where W is the number of the network weights full decoupling takes place.
Decoupling can also be referred to each neuron (node-decoupling) or to a layer
(layer-decoupling). In such a way the Decoupled Extended Kalman Filter (DEKF)
is formulated.
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DEKF algorithm is related to the following recursive formulae, which distin-
guish formulae (65) from GEKF by adding the subscript j to the weights of in-
dividual groups and express the global vectors and matrices via concatenation of
individual quantities. The DEKF algorithm can be written in the following recur-
sive form:

Ak Rk

g

j 1

H j
k

TP j
kH j

k
1

K j
k P j

kH j
kAk

ŵ j
k 1 ŵ j

k K j
kek

P j
k 1 P j

k K j
k H j

k
TP j

k Q j
k

(73)

RLNN network. The Kalman filtering can also be applied to learning of the Re-
current Layered Neural Network (RLNN) shown in Figure 13b.

RLNN is a modification of the Elman network, see Pham and Liu (1995).
RLNN is only internally recurrent since the time-delay of the vector of poten-
tial vl

k 1 is applied as the input to the layer l. These additional internal inputs are
taken into account in the process and observation equations:

wk 1 vk wk vk 1 k (74)

yk hk xk wk vk 1 ek (75)

Obviously, also in RLNN the auto-progressive input ŷk 1 can be applied but in
such a case the internal recursive input v3

k 1 yk 1 is not introduced.

Example 4.1, taken from Lou and Perez (1996). The mathematical model is given
by the curve h x t x of the following equation

t x h x 0 1exp x sin 25x 0 9sin x 10exp x 2 (76)

with the input variable x 0 1 . This interval was divided into 100 equal length
subintervals with K 101 points corresponding to the ends of subintervals. Data
from these points were assumed to be patterns of the training set xk tk K 101

k 1 .
The standard network with one hidden layer FLNN: 1-17-1, see Figure 14, was

proposed to compute the physical type curve y x;w fitting well the points xk tk .
The bipolar sigmoid was used in the hidden neurons defined in (12). The output is
linear with the identity activation function (11).

The network shown has NN 7 1 8 neurons and the number of weight
parameters (synaptic weights and biases) equal W 2 17 1 17 1 52.
Initial values of the weights were randomly selected for k 0 from the range

0 5 0 5 . Two learning methods were used:
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Figure 14. Neural network used for analysis of Example 4.1

1) classical method BP+M, i.e. back-propagation + momentum term, see
Waszczyszyn (1999),

2) DEKF algorithm.
In case of BP+M application the learning rate 0 005 and momentum coeffi-

cient 0 5 were used. The iterations were poorly convergent and after S 5000
epochs the training error was MSE S 0 011.

The DEKF algorithm was applied to the network FLNN shown in Figure 13a,
without using autoregressive input yk 1. The decoupling was performed with re-
spect to g 8 groups corresponding to the network neurons. The artificial noise
was introduced according to formulae (72) with the parameters as written below:

Rk 10exp s 1 50 Q j
k 0 01exp s 1 50 I8 8 (77)

Training with the Kalman filtering was continued up to S 216 epochs when the
error MSE S 0 001. In Figure 15 fitting of simulated curve y x;w to the math-
ematical curve h x is shown. It is clear that the application of DEKF algorithm
gives the simulated curve much more fitting to h x than the classical algorithm
BP+M.

The Kalman filters are commonly applied in the analysis of many engineering
problems related to linear dynamic systems (especially, in the control theory and
pattern recognition), see Korbicz et al. (1994). Kalman filtering was used in net-
works applied to the analysis of structural dynamics problems, see Sato and Sato
(1997). Krok and Waszczyszyn (2007) applied DEKF and RDEFK algorithms
in the simulation of so-called Response Spectra from the paraseismic excitations,
made similar applications. These applications were developed in Krok’s PhD. dis-
sertation, see Krok (2007). In the dissertation, neural networks with Kalman filter-
ing were also applied to the analysis of hysteresis loops in mechanics of structures
and materials, see Krok (2006). Two examples of the Kalman Filtering in SNNs
are discussed in Points 6.1 and 6.2.
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Figure 15. Fitting of curves y x;w , trained by algorithms DEKF and BP+M, to
mathematical curve h x

It is worth mentioning that the Kalman filter algorithms can also be formulated
on the base of Bayesian methods, as discussed in books by Haykin (2001) and
Bishop (2006).

5 Bayesian Neural Networks

5.1 Bayesian vs. Standard Neural Networks

There are several reasons why the Bayesian Neural Networks (BNNs) are in the
centre of attention of many researchers and engineers. BNNs have several features
which distinguish them from the Standard Neural Networks (SNNs):

i) BNNs are probabilistic networks, vs. SNNs which are deterministic. That
means that in BNNs random variables are used, and in the analysis not only means
are searched (like in SNNs) but also the probability distribution of the used vari-
ables and parameters.

ii) BNN on the basis of the Bayes’ theorem in which conditional probabilities
are used for the inference of ‘a posteriori’ probability distribution (pd) on the base
of known or earlier computed ‘prior’ pd.

iii) The Bayesian inference needs the computation of integrals over all the
system parameters, called in short marginalization of variables. This creates the
marginalization paradigm of BNNs, vs. the SSN error minimization paradigm.

iv) Regularization is introduced into BPN models in order to control the over-
fitting phenomena. This is not a common approach in SNNs since regularization
or corresponding penalty functions are not usually introduced into formulated de-
terministic models.
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v) BNNs contain in fact SNNs since the maximum likelihood method, leading to
“not truly” BNNs, fully corresponds to the SNN paradigm of error minimization.

vi) BNNs seem to be better mathematically founded than SNNs in which many
heuristic types of knowledge are introduced.

vii) BNNs better fit the physical reality of many problems analysed in science
and technology (including, obviously, civil or mechanical engineering) due to the
probabilistic character of those networks.

This Section is based mainly on Bishop’s book, Bishop (2006) and Tipping’s
review, Tipping (2004) but we also return to an outstanding review by MacKay
(1992) and contributions by other authors. In Section 5 the main ideas of Bishop’s
approach are presented, illustrated by simple examples. The attention is focused
on various Bayesian computational methods suitable in the analysis of regression
problems. New trends in BNNs are also discussed in short at the end of the Section.

5.2 Some basics from the probability theory

In order to understand problems discussed in this Section only some basics from
the theory of probability were selected from the book by Bishop (2006), Sections
1, 2 and Appendix B.

Probability and Bayes’ theorem. Let us consider two random variables X and Y
and the probabilities that X will take value xi and Y will take value y j:

p X xi p Y y j (78)

The joint probability, written in the form:

p X xi Y y j (79)

is used for the case both variables are independent of each other.
The case of the probability of Y conditioned by X (this is verbalized as “the

probability of Y given X”) is defined as conditional probability p Y X . In the
same way we define probability p X Y of X given Y .

The joint probability p X Y can be expressed by conditional probabilities by
means of the product rule:

p X Y p Y X p X (80)

p X Y p Y (81)

where: p X and p Y – probabilities of X or Y , sometimes called marginal prob-
abilities.
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The second fundamental rule is the sum rule, which is written below with sum-
ming over Y y j:

p X xi
Y

p X Y
J

j 1
p X xi Y y j (82)

The two expressions (80) and (81) must be equal so the following Bayes’ the-
orem can be derived:

p Y X
p X Y p Y

p X
(83)

The theorem can be expressed by means of the following verbalization:

posterior
likelihood prior

evidence
(84)

where the used words correspond to the terms commonly applied in the Bayesian
analysis. The evidence plays the role of a factor which can be written by means of
sum and product rules (80) and (81):

p X
Y

p X Y p Y
J

j 1
p X y j p y j (85)

Theorem (83) is applied to the Bayesian inference in which we start from a
rough ‘a priori’ estimation (prior) of the considered variable Y , for instance the
probability density p Y . Formula (83) enables us to compute an ‘a posteriori’
estimation (posterior) p Y X of Y given X , i.e. an additional knowledge is intro-
duced related to X .

Probability densities. The probabilities discussed above are defined over discrete
sets of events. We also examine probabilities with respect to continuous variables.
Probability density (also called probability distribution - pd) is defined below over
real variable which must satisfy two conditions:

p x 0 (86)

p x dx 1 (87)

The pds can be related also to real variables x and y for which the product and
sum rules take the form:

p x y p y x p x (88)

p x p x y dy (89)
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where integral (89) is taken over the whole x axis.
Rules (88) and (89) can be easily generalized for multivariate variable x D:

p x 0 (90)

D
p x y dy 1 (91)

where D is a region (domain) of integration over variable y.
The Bayes’ theorem is valid also for real multivariate variables x and y:

p y x
p x y p y

p x
(92)

p x p y x p x dy (93)

where the region of integration D is usually omitted at the integral.

Gaussian probability distribution. In the Chapter we focus on the applications
of the Gaussian probability density called normal pd. In case of single variable x
the normal pd takes the form, drawn in Figure 16:

x 2 1

2 2 1 2
exp

x 2

2 2 (94)

where: – mean, 2 – variance which can be related to other parameters, i.e.
– standard deviation, 1 2 – precision.

Figure 16. Gaussian (normal) probability distribution

The Gaussian pd shown in Figure 16 fulfils the requirements (90) and (91)
due to the exponential function and the scaling parameter a 2 2 1 2 in for-
mula (94).
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In case of D-dimensional variable x the Gaussian pd takes the form:

x
1

2 D 2 1 2
exp

1
2

x T 1 x (95)

where: x D – position and mean vectors, x x T D

D – covariance matrix, – determinant of .
The covariance matrix is symmetric and has D D 1 2 2 independent

parameters. The mean has D parameters, so in the general multivariate case the
Gaussian pd has D D 3 2 independent parameters.

It is sometimes convenient to examine a simplified form of a Gaussian pd in
which the covariance matrix is diagonal with components

i j i j
2
j (96)

The simplified matrix leads to 2D independent parameters of the Gaussian pd.
Further simplification can be obtained by choosing j for all j. This leads to
the isotropic covariance matrix

I (97)

and the corresponding Gaussian pd has then D 1 independent parameters.
Data points drawn independently from the same distribution are said to be in-

dependent and identically distributed (often abbreviated to i.i.d.). In such a case,
we can write the probability of data set xn N

i 1, given and 2, in the form:

p t X w 2
N

n 1
tn y xn;w 2 (98)

5.3 Bayesian inference

In Point 2.1 we discussed the regression problem and illustrated it on a case study
of curve fitting. Following this approach, let us return to the physical model of
regression assuming that the target variable t is given by a deterministic curve
y x;w with additive Gaussian noise

t y x;w (99)

We can express our uncertainty over the value of t using a probability distribu-
tion, which is assumed to be a Gaussian noise. The noise is independent of ob-
served patterns xn tn and has the normal pd of zero mean and variance 2, i.e.
p 2 0 2 . This leads to pd for t defined by (99):

p t x w 2 t y x;w 2 (100)
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Figure 17. Observation points xn tn , simulated curve y x;w and Gaussian con-
ditional distribution p t x0 w 2

where the function y x;w plays the role of the mean and 2 is the noise variance.
In Figure 17 the observation points xn tn are shown, numerically simulated with
variance 2 at the curve y x;w as well as Gaussian pd (100).

It was assumed above that the observation tn is referred to multidimensional
domain x D (input space in case of SNNs) so that data set is completed as
pairs xn tn :

xn tn N
n 1 X t (101)

where the input and target subsets are:

X x1 xN t t1 tN (102)

The main goal of regression analysis is to find a scalar regression function
y x;w , probability distributions of the weight parameters vector p w and the
vector of target values t. The analysis is based on discrete data set in which we
have only point observations tn xn . This defines three basic quantities: 1) data
set , 2) set of parameters w , 3) numerical model which can be spec-
ified as a set of hypotheses l related to network architecture or computational
algorithms.

The analysis is based on Bayes’ theorem which reflects various relations be-
tween the conditional probabilities of the mentioned variables. A general form of
Bayes’ theorem is defined as formula (92).

In order to approach the Bayesian inference let us consider two simple prob-
lems called Examples 5.1 and 5.2.

Example 5.1. The Bayesian inference is applied to prediction of probability p w
for weight vector w on the base of an observable set of data . We formulate
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Bayes’ theorem in the following form:

p w
p w
p

p w (103)

Probability distribution p w is verbalized as “probability of w given ”.
This means that a prior probability distribution was roughly evaluated as p w
and after a set of data was observed a posterior pd was estimated by means of
(103). It is worth mentioning that pds are values of random variables fulfilling
the normalization condition (91). That is why the evidence (93) plays the role of
normalization factor to have the integral value over the variables equal unity.

The Bayesian inference predicts higher values of the posterior due to multi-
plication of the prior by the ratio of likelihood and evidence, see (103). This is
sketched in Figure 18, where wMP is called the Most Probable weight vector.

Figure 18. Estimation of probability of the most probable weight vector wMP

Example 5.2 – Ockham’s razor. The main goal of this example is to discuss the
evaluation of model complexity.

Let us formulate now Bayes’ theorem for three random variables which are:
data set , vector of parameters w and a set of models l . After application of
sum and product rules the following form of Bayes’ theorem can be derived, see
e.g. MacKay (1992)

p w l
p w l p w l

p l
(104)

in which the so-called model evidence is written in the integral form:

p l p w l p w l dw (105)

Let us focus on three models put in order with respect to their complexity, i.e.
a simple model 1, a complex model 3 and a model 2 of medium complexity.
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In Figure 19 the pds of these models are shown. The area under each probability
distribution p l equals unity but the complex model has a wider range of
prediction R3 than the simple model with range R1. This means that the maximum
value pd of complex model p 3 is smaller than p 1 of a simple model.

Figure 19. Conditional probability distributions of data given models l

From the viewpoint of complexity the medium model 2 is the best, which
gives satisfactory estimation of the pd value and the range of predicted data. This
question will be discussed as an important problem of model design, referred also
to the formulation of neural network architectures.

The application of Bayes’ theorem to the evaluation of model complexity is
related to the so-called Ockham’s razor which reflects William of Ockham’s sen-
tence, expressed in the 14th century in a very theological form “non sunt mul-
tiplicanda entia sine necessitate” (from Latin “entities should not be multiplied
unnecessarily”), see http://www.britannica.com/.

Now let us formulate Bayes’ theorem for a simple problem of linear regression
analysis without application of a penalty function for controlling the over-fitting
phenomena (zero value of the hyperparameter ). Only one model is assumed
to be applied so the symbol l can be omitted in (105) but the second variable,
corresponding to the precision hyperparameter, so 1 2 is taken into account.

Bayes’ theorem can be written in the following form, where the data input set
X and the target set t are explicitly written

p w X t
p t X w p w

p t
(106)

p t
W

p t X w p w dw (107)

For convenience of notation certain variables are commonly omitted, which
should be formally applied in notation of conditional probabilities or in operators
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applied in Bayes’ theorem. The reasons for omitting the quantities can be different
and except those commonly used habits, a reason of omission will be mentioned
in the paper content.

A shortened notation gives the following form of formulae (106) and (107)

p w t
p t w p w

p t
(108)

p t p t w p w dw (109)

In formulae (108) and (109) the input data set X is omitted since in the re-
gression problems we never seek to model the given input data, and X is purely a
conditional variable. The region of integration W is also omitted since it is clear
that an appriopriate region should correspond to the variable w.

5.4 Maximum Likelihood method

Let us turn our attention to the likelihood in the nominator of (108). The max-
imal value of the likelihood function L p t w gives fairly good estimation
of probability of the vector of parameters w. This approach can be deduced from
the fixed value of the evidence and a lower value of the prior than the value of the
posterior.

Let us assume the Gaussian (i.e. normal) probability density for all the vari-
ables except the hyperparameter 1 2, which is fixed and known in advance.
In later points the inference of 2 from the data set will be discussed. The Gaus-
sian pd of the likelihood can be written in the following form:

p t w 2
N

n 1

tn y xn;w 2 (110)

where:

tn y xn;w 2 1

2 2 1 2
exp

1
2 2 tn y xn;w 2 (111)

It was proved that it is convenient to consider the log likelihood function, see
Bishop (1995, 2006):

lnL ln p t w 2 1
2 2

N

n 1

tn y xn;w 2 N
2

ln
1

2

N
2

ln 2 (112)

Now we consider maximizing of lnL with respect to the model parameters, i.e.
the vector w and variance 2. From the equations L w 0 and L 2 0
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we obtain the following maximizers:

max
w

lnL
L w 0

wML (113)

max
2

1
2 2

N

n 1
tn y xn;w 2 N

2
ln

1
2

L 2 0

2
ML

1
N

N

n 1

tn y xn;wML
2 (114)

where the acronym ML stands for the Maximum of Likelihood.

General solution for ML. The ML method corresponds to the Least Square (LS)
method discussed in Point 2.2. The parameter vector wML is chosen by mininizing
the cost function E w , defined by formula (5). This formula can be obtained
as the negative log likelihood lnL if we drop in (112) the terms independent
of w. Thus, we come to the minimization problem whose minimizer wLS can be
computed in an iterative way (networks FLNN) or by the Least Square method
(network RBNN)

min
w

E w max
w

lnL

min
w

1
2

N

n 1

tn y xn;w 2 E w 0
wLS wML (115)

It is worth adding that the analogue was obtained under the assumption of a
Gaussian noise in the Bayesian likelihood, which is reflected in formula (110).
Another interesting conclusion is that the variance of the noise 2

LS, computed
from the equation E 2 0, equals the Mean-Square-Error (MSE), see Ap-
pendix A1:

MSE 2
LS (116)

The error MSE is explored in the training of deterministic SNNs. The only remark
is that MSE should be computed for non-scaled output variables.

The conclusions expressed above are general and fit well the Feed-forward
Layered NN (FLNN). The Radial Basis Function NN (RBFN), discussed in Point
2.4, is linear in weights so it can give explicit analytical formulae for wML and 2

ML.

Application of RBFN in ML. Due to RBFs, the regression function y x;w can
be written in an explicit form, cf. (16):

y x;w
K

k 0

wk k x wT x (117)
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where: w – vector of weights of dimension 1 W for W K 1, x
0 x 1 x K x – vectors of RBFs of dimension K 1 1, where the

number of RBF equals K and 0 x 1.
After substitution of (117) to (110) the likelihood pd takes the form:

L p t w 2
N

n 1
tn wT x 2 (118)

From the log likelihood (112) we can deduce the error function

E w
1
2

N

n 1
tn wT xn 2 (119)

The optimal weight vector wML can be computed as the minimizer (115), which
corresponds to the solution (27)

wML wLS
T 1 Tt (120)

where is design matrix (24).
The mean ML and variance 2

ML of computed and biased output variables are:

ML wT
ML xn (121)

2
ML

1
N

N

n 1
tn wT

ML xn 2 (122)

5.5 Bayesian inference and MAP

General relations. Let us extend Bayes’ theorem (108) with respect to adding
as an additional parameter:

p w t
p t w p w

p t
(123)

We suppose that the prior pd is Gaussian in form:

p w w 0 1I (124)

and the likelihood is given by Gaussian pd (110). The resulting posterior pd can
be written in the form:

p w t p t w p w (125)

which is non-Gaussian because of nonlinear dependence of y x;w on w.
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Substitution of Gaussian pds (110) and (124) into (125) gives an approximation
of the posterior pd:

p t w p w
2

N 2

2

W 2
exp F w dw (126)

The log of posterior (125) can be written in a compact form:

ln p w t F w
N
2

ln
W
2

ln
N W

2
ln 2 (127)

Thus, omitting constant terms, the negative logarithm ln p w t gives
the penalized cost function

F w E w EW w
2

N

n 1

tn y xn;w 2

2

W

i 1

w2
i (128)

Function (128) fully corresponds to function (8) if 1 and 2.
Similarly as in (115), we can write the following relation:

min
w

F w max
w

ln p w t
F w 0

wMAP (129)

where the acronym MAP stands for Maximum APosterior.
In case of RBFN the application of minimization (129) leads to the analytical

formula corresponding to (28):

wPLS
T I 1 Tt (130)

where 2.
The maximization of the approximated log of posterior (127) with respect to

the mean of observable values of the set of outputs y xn wMAP and with respect
to the variance 2 1 gives the following formulae:

MAP
1
N

N

n 1

y xn wMAP (131)

2
MAP

1
N

N

n 1
tn wT

MAP xn 2 (132)

The mean MAP and variance 2
MAP can be related to observable output points

(biased data). In case we remove bias from observable data the factor N 1 is taken
into account in (132) and unbiased variance takes the form, cf. Bishop (2006), pp.
27 and 171:

˜ 2
MAP

1
N 1

N

n 1
tn wT

MAP xn 2 (133)
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Other formulae can be also obtained from maximization of (127) with respect
to hyperparameters and :

eff
W

2EW wMAP
eff

N
2E wMAP

(134)

Parameters (134) are called efficient hyperparameters. They can be used in an
iterative procedure for improving the weight vector wMAP computed by standard
(deterministic) NNs, cf. Bishop (1995), Chapter 10.

Linear predictive distribution and curve fitting. Let us assume that the values of
hyper-parameters and are fixed. Results obtained above were obtained on the
base of point estimation of the vector wMAP in regression. From a practical point of
view we are interested in the prediction of a regression curve in points other than
those corresponding to training patterns, i.e. in fact, a continuous regression curve
y x;wMAP is needed. This question is related to a more Bayesian approach in
which the conditional probability distribution (100) is given in form of the integral
over all weights wi, written in full notation:

p t x X t
W

p t x X w p w X t dw (135)

where: x t – continuous variables, called a single, “new” or prediction pattern,
X x1 xN t t1 tN – sets of training data.

In the Bayesian analysis we apply the so-called principle of marginalization,
i.e. integration over marginal variables (variables we want to eliminate). In the
given conditional probability distribution (135) the weight vector w is treated as a
marginal variable.

In case of RBFN model the conditional distribution (135) is taken for a sin-
gle pattern x t . Then, taking into account Bayesian laws, the following predic-
tive distribution for predicting a new pattern x t can be obtained, see Bishop
(1995), p. 400:

p t x X t t wT
MAP x 2

N x (136)

The variance 2
N x for predictive distribution is given by the curves corre-

sponding to standard deviation N x , in literature called error sigma bar t, see
Bishop (2006), p. 156:

2
N x 2

t x 2 x TSN x (137)

where:
SN

T I 1 (138)

The first term in (137) corresponds to the noise of data. The second term rep-
resents the uncertainty related to the vector of parameters w. Because the pds in w
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are independent it was possible to prove (see references in Bishop (2006), p.156)
that 2

N 1 x 2
N x and for N the 2

N x 1 2.

Example 5.3, taken from Bishop (2006), pp.157-158. For illustration the applica-
tion of predictive distribution for the Bayesian linear regression model (basing on
the interpolation RBFN), we return to the data set generated from the sinusoidal
mathematical curve h x sin2 x.

In Figure 20 four special cases are shown, corresponding to N = 1, 2, 4 and 10
patterns. The broken line represents the mathematical regression curve h x .

Figure 20. Fitting curves and regions of N uncertainty computed either by the
Gaussian model consisting K = 9 Gaussian RBFs (for N = 1, 2, 4 patterns) and
polynomial RBF for N = 10

The Bayesian prediction was carried out by means of a model consisting of
K 9 Gaussian RBFs. This model was used for three data sets composed of
N 1 2 4 patterns. The fourth figure was made by the polynomial model of order
K 9. The computations of fitting curves y x;wMAP , plotted as continuous lines
in Figure 20, were carried out for fixed values of hyperparameters 5 10 3

and 1 2 11 1. The shaded region of the prediction uncertainty spans on
1 standard deviation bounds (1 sigma error bars 1 t x N x around the mean
y x;wMAP .

It is worth noting that the predictive region of uncertainty depends on x, ac-
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cording to (137). The width of this region equals 2 N x and, in case of Gaussian
RBFs, is smallest in the neighbourhood of the data points where centres of RBFs
were placed. It is in these points of independent variables xn

k that the bounds
are nearly 1 . The same situation occurs if the number of patterns increases.
This is the case of N 10 patterns, analysed by K 9 polynomial RBFs (7). It
is visible that the fitting curve (polynomial of the 9th order) is bounded by nearly
equidistant curves: 1 N 1 t 0 3 .

5.6 A more general Bayesian framework

Computation of predictive distribution. Let us return to the problem of predict-
ing a single variable t , corresponding to an input x . The conditional Gaussian
distribution can be written in a general form

p t x w t y x ;w 1 (139)

This formula is referred to a general form of regression function y x;w which can
be used as an output of the Feed-forward Layered Neural Network (10). Now the
regression problem is nonlinear, contrary to the network with RBFs which imply
the “linearity in weights”.

Using distribution p w in form (124) we can obtain the posterior p w
in the form corresponding to (125) and the log posterior takes the form (127). Be-
cause the function y x;w is nonlinear, the solution wMAP can be found by means
of neural networks, applying error backpropagation or any other learning method.

Having evaluated wMAP we can use it in the Gaussian approximation to the
posterior distribution, see Bishop (2006), p.279:

q w w wMAP A 1 (140)

where matrix A is given by the formula

A w w p w H I (141)

In formula (141) the Hessian matrix H appears comprising the second derivatives
of the error function E with respect to the components of weight vector w:

H w wE (142)

Predictive distribution is obtained by application of the marginalization princi-
ple:

p t x p t x w q w dw (143)

However, even with the Gaussian approximation to the posterior, the integra-
tion is analytically intractable because of the neural network function y x;w .
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Thus, we have to either apply the numerical integration or use approximation of
y x;w .

The common approach is to use the Taylor series and restriction to the linear
approximation of y x;w , which leads to the formula

y x;w y x;wMAP gT w wMAP (144)

where
g wy x;w w wMAP (145)

The approximation (145) gives the following Gaussian pd of predictive distribu-
tion, see Bishop (2006), p.279:

p t x t y x ;wMAP
2
t x (146)

where the input-dependent variance is given by

2
t

2 gTA 1g (147)

which is commonly used for computation of the error sigma bar t.
In case of application of RBFN, the analysis becomes linear and corresponding

analytical formulae (136) and (137) can be applied.
The main problem of the general Bayesian inference is the application of the

Hessian matrix (142). The computation of the second order error function gradi-
ents needs more operations so very often simple approximations are used in the
neural network learning methods. From among many approximations, let us men-
tion only the use of the first gradients of the error function in the pseudo-Newtonian
learning methods applied in ANNs.

Let us write the Hessian matrix in the form

H E
N

n 1

yn yn
N

n 1

yn tn yn (148)

where yn y xn ;w w. The elements of the matrix H can be found in
O W 2 steps by simple multiplication. This estimation can be diminished to O W
steps applying the approximation of the Hessian matrix

H
n

bnbT
n (149)

where bn yn. This approach is used in the Levenberg-Marquardt learning
method but for general network mapping the second term in (148) cannot be omit-
ted.

Marginal likelihood. Let us return to Bayes’ theorem (123) writing the evidence
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p t in an extended form p . Then we express it by means of the sum
rule in the following integral form

p p w p w dw (150)

which is the marginal likelihood. Formula (150) is obtained from the likelihood
via marginalization of the weight parameter vector w. After substitution Gaussian
pd (111), the formula (150) takes the form

p 2 N 2 2 W 2 exp F w dw (151)

where the function F w is the error cost function

F w F wMAP
1
2

w wMAP
TA w wMAP (152)

The function F wMAP corresponds to formula (128):

F wMAP E wMAP EW wMAP

2

N

n 1
tn y xn;wMAP

2

2
wT

MAPwMAP (153)

In the following analysis we will apply the approximate log marginal likeli-
hood

ln p F wMAP
1
2

ln A
W
2

ln
N
2

ln
N
2

ln2 (154)

In case of application of Gaussian RBFs the F w function takes the following
analytical form:

F w
2

t w 2

2
wTw

F mN
1
2

w mN
TS 1

N w mN (155)

where:

F mN 2
t mN

2

2
mT

NmN (156)

S 1
N

T I (157)

mN SN
Tt (158)
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In Figure 21 the plot of the negative log marginal likelihood lnMal(ln�)
is shown (the term const(N � )) is omitted). The most striking effect is that the
function lnMal(ln�) has a minimum! It was evaluated that the minimal value
of

min
w

( lnMal(ln�)) ln�Mal = 0 8 (160)

A great value of the conclusion expressed above is that the log marginal likeli-
hood curve lnMal(ln�) has the maximum at ln�Mal (minimum for lnMal(ln�)).
Thus, the curve of log marginal likelihood can be applied for the selection of an op-
timal value of the regularization parameter ln�Mal. The criterion MML (Maximum
Marginal Likelihood) can play a crutial role since on the same set of training pat-
terns it is possible to optimize the numerical model only with respect to the training
patterns (without a validation set of patterns!). This conclusion can be invaluable
especially for small known set of patterns P (in such a case the training set can
correspond to the full set L = P).

Example 5.6, taken from Bishop (2006), pp. 167-168. Let us now apply the cri-
terion of maximum marginal likelihood to the evaluation of an optimal order K of
the polynomial. The number of training patterns is N = 10 and values of hyperpa-
rameters are �xed as � = 1 � = � = 5 10 3.

The log marginal likelihood (159) can be used and its value is computed as-
suming K = 0 1 9. In Figure 22 the plot of lnMal(K;L ) is shown versus the
error function curves RMS(K;S ), where S = L corresponds to the training set
of patterns and S = V to a validation set, cf. Bishop (2006), Figure 1.5.

Figure 22. Plots of error functions RMS(K;S ) for training (S = L ) and valida-
tion set (S = V ), vs. log marginal likelihood curve lnMal(K;L )
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The graphs plotted for the K 0 1 2 polynomials (7) give a poor approxima-
tion if we look at the training and validation curves RMS K; and RMS K; ,
respectively. Then for the polynomial orders between K 3 and K 8 the errors
are roughly constant. The log marginal likelihood curve lnMal K; , computed
for the training set of patterns shows an increase of ln Mal values changing the
polynomial order from K = 0 to K = 1. The polynomial gives a decrease of ln Mal
value for K 2 since the quadratic polynomial has no even terms for good ap-
proximation of the sinusoidal curve. The global maximum is reached for K 3.
The criterion of maximum of the log marginal function clearly indicates the cu-
bic polynomial as a simple model, contrary to the cross-validation criterion which
gives nearly the same values of the validation error for K 3 8 .

The remarks expressed above are of great practical value. The maximum of
lnMal prefers a model which is neither too simple nor too complex. This conclu-
sion fully agrees with Ockham’s razor criterion. Moreover, the maximum log Mal
can indicate the best model, contrary to the cross-validation criterion which can
give preferences to some models of various complexity.

The marginal likelihood (150) fully corresponds to the model evidence in (123).
The searching for Maximum of Marginal Likelihood is performed by means of the
Evidence Procedure, see Nabney (2004). In this procedure hyperparameters are
updated using their optimal values.

5.7 SNN/MAP networks

Optimization of hyperparameters. So far, hyperparameters and have been
assumed as fixed and known in advance. The nonlinear Bayesian analysis is based
on hyperparameters which depend on the data set, values of noises or other ap-
proximation errors. Thus, in the full nonlinear analysis hyperparameters are now
variable. Corresponding optimal values of opt and opt can be derived on the base
of a more general Bayesian framework.

In the Evidence Procedure we can compute point estimations of and by
maximizing ln p . We will refer the analysis to the eigenvalues of the
Hessian matrix. Let us start with the following eigenequation

Hui iu (161)

where i 1 W for W corresponding to the weight parameter space dimension.
It can be proved, see Bishop (2006) pp.169 and 280-281, that maximization of
(154) with respect to and gives the following two formulae:

opt
wT

MAPwMAP
(162)

1

opt

2
N

1
1

N

n 1
tn y xn;wMAP

2 (163)
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where
W

i 1

i

i
(164)

Formulae (162) to (164) reflect the coupling of the hyperparameters opt and
opt and the computed (updated) weight vector wMAP by means of the parameter
. In case i we have 0 and the precision parameter MAP ML. The

other case i gives W .
The case of N W corresponding to a great number of observations is worth

mentioning. If additionally the parameters are well determined, i.e. for i

then formulae (134) are valid since opt eff and opt eff.

SNN/MAP networks. In practical implementation, we can apply the Evidence
Procedure in the SNN training process. Hyperparameters are used in the penalized
error function F w given by formula (128) with hyperparameters and .

We can start from certain initial values of in and in and applying a learning
method SSN we can compute the weight vector wold

MAP. Then the hyperparameters
are updated by means of formulae:

new
2EW wold

MAP
new

N

2E wold
MAP

(165)

Then the values of hyperparameters (165) are introduced to the supervised learning
of SSN for computing the parameter wnew

MAP. To continue iteration we substitute
wnew

MAP wold
MAP into the recursive formula (165).

Instead of (165) the approximate formulae (134) can be also applied. This
enables us to omit the eigenanalysis of the Hessian matrix (161).

The approach discussed above corresponds to formulation of a new learning
method of standard neural networks. The Bayesian framework is explored for
optimization of hyperparameters used in the penalized cost function F w . Thus,
the merit of the neural network is not change since the minimization of the cost
function error is the paradigm of the network SSN/MAP.

The SSN/MAP networks are discussed in the book by Bishop (1995). The ap-
plication of these networks to the analysis of various problems, cf. e.g. Foresee
and Hagan (1997), Słoński (2005) indicates out that only several updates of hyper-
parameters are needed to obtain satisfactory results. SNN/MAPs were also applied
to the analysis of engineering problems discussed in Points 6.1 and 6.4.

5.8 General Bayesian analysis

Practical Bayesian prediction and a Monte Carlo method. In the basic Bayes’
theorem (123) we used hyperparameters only as conditional variables. The theo-
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rem can be written in a more practical form

p w t
p t w p w p p

p t
(166)

where the evidence (marginal likelihood) is

p t p t w p w p p dwd d (167)

Comparing (167) and (150) we can see that marginalization is extended. Now
not only the weight parameter vector w but also hyperparameters and are
treated as marginal variables. Therefore, now the prior pds p and p should
be defined. The pd p is so-called hyperprior.

Similarly to (167) the Bayesian predictive distribution can be written in the
form

p t t p t w p w t p p dwd d (168)

Unfortunately, nearly always integrals (167) and (168) cannot be analytically
tractable to compute. There are two ways possible to the integration over marginal
variables. The first approach focuses on approximations which enable obtaining
the posteriors in the form of analytical probability distribution. Some ideas of this
approach are discussed briefly in the next Point.

The second approach, commonly used, is related to the application of numer-
ical algorithms. One of more efficient techniques is to join the numerical Monte
Carlo method with numerical algorithms of data sampling. Below we present in
short the main ideas of the Markov Chain Monte Carlo (MCMC) method, see
Bishop (2006), pp. 537-554, whose modification is known as the Hybrid MC
method, see Neal (1992).

Let us consider an integral and its Monte Carlo simulation

I F w p w dw
1

MC

MC

i 1
F wi p wi

1
MC

MC

i 1

i F wi p̃ wi

i p̃ wi
(169)

where: p w – posterior pd of w, MC – the number of Monte Carlo samples,
p̃ wi un-normalized distribution.

The MCMC method is a random walk in which the successive steps are attained
adding a small random noise to the weight parameter vector w:

wnew wold (170)
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The walk is assumed to obey the first order Markov chain, defined in Point 4.1.
In case of the Hybrid Monte Carlo (HMC) the gradient of p w is applied to
choose search directions which favour regions of high posterior pd.

The candidate steps are controlled by the application of a sampling method.
What is commonly used are either the Metropolis-Hastings or Gibbs method, see
e.g. procedures in the manual of NETLAB by Nabney (2004). The main idea to
control the candidate step is, see Bishop (1995), p. 427:

a) if p wnew p wold then accept candidate sample

b) if p wnew p wold then reject candidate sample
(171)

In Figure 23 an example, taken from Bishop (2006), p. 539, is presented. It
illustrates the application of the Metropolis-Hastings method, in which the ful-
filling condition (171) led to rejection of 49 samples from among 150 generated
candidate samples.

Figure 23. Illustration of the Metropolis algorithm in which rejected candidates
are marked by broken lines

Type–II ML approximation. From among analytical methods suggested to be ap-
plied to marginalize certain probability densities, the maximum of Type-II Marginal
Likelihood (see Tipping (2004)) is below discussed briefly.

Let us start from the product rule of probability and write down the following
relation

p w t p w t p t (172)

The first term in (172) is known as p w t and the second
term can be approximated by -function at its mode, i.e. we find the “most proba-
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ble” values MP and MP which maximize the posterior, see Tipping (2004):

p t
p t p p

p t
(173)

Since the denominator is independent of and , we maximize the nominator
of (173). Furthermore, if we assume very flat priors, called uninformative priors
over ln and ln , then we come to the problem of the maximum of marginal
likelihood.

Having found MP and MP we can formulate the following approximation for
predictive distribution

p t t p t w MP p w t MP MP dw (174)

The integral (174) is computable and it is a Gaussian pd:

p t t 2 (175)

The mean and variance of (5.8) can be analytically expressed in case of RBFs
application:

wT
MP x 2 2

MP x TSN x (176)

where the vector x and the matrix SN are defined in (23) and (138), respec-
tively.

Sparse Bayesian models and hierarchical priors. A lot of attention in the linear
analysis has recently been paid to the sparse learning algorithms (Bishop (2006),
Tipping (2004)). These algorithms set many weight wk to zero in the estimator
function y x k k x wk.

The sparsity can be attained, in fact, by introducing a so-called hierarchical
prior, related to the vector of hyperparameters i

W
i 1. This prior and prior

are defined by means of Gamma distribution, see Bishop and Tipping (2003):

p
W

i 1
Gamma i a b p Gamma c d (177)

where

Gamma a b
1
a

ba a 1e b (178)

in which a 0 ta 1e tdt is the Gamma function. It was proved by Bishop and
Tipping (2003) that it is possible to assume zero values for the scaling parameters
a b c d 0.
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The effective prior p wi is defined by a Student’s t-distribution

p wi p wi i p i d i
ba a 1 2

2 1 2 a
b w2

i 2 a 1 2 (179)

In Figure 24a the Gaussian distribution p w in two-dimensional domain
p w1 w2 is shown. In Figure 24b the Student’s t-distribution prior p w is pre-
sented after hyperparameters and the Gamma pd product were integrated. As can
be seen in Figure 24b, the probability mass is concentrated close to the origin
where both weights go to zero, and also along the ribs where one of the two weights
goes to zero.

Figure 24. a) Gaussian prior p w , b) Student’s t-distribution for prior p w .

5.9 Kernels and Gaussian Process

Kernels methods. In Point 2.4 we briefly discussed the RBFN network in which
the Gaussian RBFs are used. The simplest Gaussian RBF can be written in the
form in which we can use the Euclidean distance x x :

x exp x x 2 2 (180)

where x is the centre of RBF. Instead of (180) we can formulate a so-called kernel
function

k x x x T x k x x (181)

The main idea of the kernel framework is introduction of the inner product in
the input space, which allows formulation of interesting extensions of many well-
known algorithms. The kernels can be of different forms. For instance, the tanh
sigmoid function can be written as the following sigmoidal kernel:

k x w x tanh axTx b (182)
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Kernels can join the exponential and algebraic functions. For instance, in the
GP analysis the following kernel is applied:

k xn xm
0 exp 1

2
xn xm 2

2 3 xn Txm (183)

where: xn xm – input pattern points, i
3
i 0 – set of the input space parame-

ters.
The kernel k xn xm is a component of design matrix known as Gramm matrix

KN N
T k xn xm (184)

where: T x1 xN . Please turn attention that now is a vector in
(184), not the design matrix (24).

Kernel functions can be used as RBFs in all the above Points where the linear
regression problems have been discussed. Kernel models are a basis for building a
numerical model called the Support Vector Machine (SVM). In the book by Bishop
(2006), pp.339-343, SVMs are in short discussed. This numerical model is similar
to the interpolation of RBFN algorithm and it can be efficiently applied in the linear
regression analysis. In Figure 25a, taken from Bishop (2006), p.344, an illustration
is shown of the application of seven kernel functions (double circle points) for the
case study of the sinusoidal synthetic data with ten points (single circles).

Figure 25. Predicting regression curves and 1sigma error bars for N 10 sinu-
soidal synthetic data, obtained by means of: a) Support Vector Machine (SVM),
b) Relevant Vector Machine (RVM)

On the base of sparse Bayesian models Tipping (2001) formulated a modifica-
tion of SVM called the Relevance Vector Machine (RVM). Due to computational
advantages of RVM the number of corresponding kernels can be significantly de-
creased, cf. Figure 25b where only three kernels were applied, vs. seven ker-
nels in SVM.
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Gaussian Process in Bayesian prediction. On the base of kernel models the
Gaussian Process (GP) approach was developed and recently it has been intro-
duced to the Bayesian prediction, see e.g. review by MacKay (1998) and books by
Bishop (2006), Rasmussen and Williams (2006). GP dispenses with the paramet-
ric model and, defines instead, directly a prior pd over functions. The main idea of
GP was clearly explained in a paper by Bailer-Jones et al. (1997). That is why we
can start from Figure 26, taken from the paper mentioned above (one-dimensional
input and output spaces are considered).

On the base of data composed of N patterns (see Figure 26 where N 4
patterns) we wish to predict a new pattern point of the target value tN 1 for the
known input xN 1. We start with computation of covariance matrix CN of size
N N with components:

cnm k xn xm 1
2 2 nm (185)

The conditional distribution p tN 1 t can be found as Gaussian distribution

p tN 1 xN 1
N tN 1 mN 1

2
N 1 (186)

where the mean and variance are computed from the Gaussian pd, see Bishop
(2006), pp. 307-308:

mN 1 xN 1 kTC 1
N t (187)

2
N 1 c kTC 1

N k (188)

The vector k and scalar c are components of the covariance matrix CN 1:

CN 1
CN k
kT c

(189)

where:

kT k xn xN 1 N
n 1 c k xN 1 xN 1 1

2 2 (190)

which enables computation of Gaussian joint distribution

p tN 1 tN 1 0 CN 1 (191)

for tN 1 tn N 1
n 1 .

It is worth mentioning that in the GP method weight parameters are not used.
The main problem of the approach is computation of the inverse matrix CN which
requires O N3 computations. A vector-matrix multiplication needs O N2 com-
putations. It is clear that in case of large data sets the curse of dimensionality
appears.
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Figure 26. Schematic description of GP method for one-dimensional regression
problem

By contrast, the application of interpolation RBFN needs the numbers of cor-
responding computations O W 3 and O W 2 , respectively for W K 1, where
K is the number of RBFs. However, an advantage of the GP framework is that we
can take into account covariance functions which could only be expressed in terms
of infinite number of RBFs. More information on the GP method can be found in
Bishop (2006), pp. 303-320.

5.10 Bayesian inference and ANNs

Let us sum up this Section by writing relations between ANNs and Bayesian in-
ference, which are, in general, completed of the learning and prediction parts, see
Table 2, where the predicted pattern is marked as xN 1 tN 1 .

It was proved that the Bayesian Maximum Likelihood and corresponding SNN/ML
fully correspond to searching of the minimum in the Penalized Least Square error
method and application of the classical, deterministic networks SNNs.

The Bayesian Maximum A Posterior approach can be used for improving learn-
ing of deterministic network SSN/MAP by means of error minimization of the
penalized cost function.

Simple BNN is based on “a more” Bayesian approach. This means that hyper-
parameters are deterministic and their values can be improved in an iterative way.
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Table 2. ANN framework, learning quantities and prediction functions

In this approach numerical methods for the integration of pds are introduced, e.g.
Hybrid Monte Carlo method.

In the True BNN the hyperparameters αMP, σ2
MP are assumed to be random

values and they are computed as variables coupled with the weight vector w and
data set D .

The application of the Gaussian Process in the Bayesian inference is based on
the computation of the total, inverse covariance matrix C−1

N (XN ,σ2) in the input
space. In this approach we resign from the weight parameter vector w and instead,
in kernels, we introduce the parameter θ, cf. (183). The most important point is
that we assume the Gaussian posterior in which the mean mN+1 and variance σ2

N+1
parameters are computed, cf. (187) and (188).

In Table 2, possibilities of using various approximations are shown and atten-
tion is also focused on the application of the Gaussian Process approach that is
now at the research top of the Bayesian analysis.

6 Applications of ANNs to the Analysis of Selected
Engineering Problems
The Section is devoted to discussion of several engineering problems, selected
from the viewpoint of illustration of the topics discussed in previous Sections of
the Chapter. All the presented problems have been developed in research con-
ducted in recent years at the Institute of Computer Methods in Civil Engineering
(now Institute for Computational Civil Engineering) of the Cracow University of
Technology, Poland, see Waszczyszyn (2006).

56
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6.1 Dynamics of buildings subjected to paraseismic excitations

In the recent 15 years a great deal of attention has been paid at the Cracow Uni-
versity of Technology, Poland to projects related to research on vibrations of real
buildings. These buildings were subjected to so-called paraseismic excitations
caused by mining tremors, explosions in quarries, traffic on motorways. A great
number of problems and the evidence collected in the corresponding data banks
have also been explored in the development of neural network engineering appli-
cations in Poland during the last ten years, see Waszczyszyn (2006).

In what follows we focus only on the data obtained during monitoring of vibra-
tions of a five-storey, prefabricated building (cf. Figure 27), see book by Kuźniar
(2004) and a review by Kuźniar and Waszczyszyn (2007). The corresponding
problem was an excellent playground to learn and develop ANNs, oriented on the
analysis of various problems of structural dynamics and experimental mechanics.

Simulation of fundamental periods of natural vibration. Natural periods, vi-
bration damping and mode shapes of natural vibrations characterize dynamic prop-
erties of structures. We concentrate only on the fundamental periods of natural
vibrations which were used in simple expert systems developed for the evaluation
of the technical state of buildings, subjected to mining tremors and explosions in
nearby mines or quarries, cf. Ciesielski et al. (1992).

Referring to data discussed by Kuźniar (2004) we focus on a group of 31 mon-
itored, prefabricated buildings of different types. Natural vibrations are excited
by propagated surface seismic waves so the full-scaled measured accelerograms
were used to compute 31 target patterns as T1 [sec.] periods of vibrations (the Fast
Fourier transformation procedure was applied). On the base of extensive research,
see references in Kuźniar (2004), the following input and output variables were
selected:

x 4 1 Cz b s r y T1 (192)

where: Cz – ratio of vertical unit base pressure for elastic strain; b – building
dimension along the vibration direction (longitudinal or transversal); s i EIi a,
r i GAi a – equivalent building and shear stiffnesses of the i-th internal walls
in the building plan, cf. Figure 27a.

The components of the input vector in (192)1 are arranged according to their
importance. This means that we can omit the input s but never Cz. That is why in
the analysis the following inputs were also included:

x 3 1 Cz b s x 2 1 Cz b x 1 1 Cz (193)

All the variables listed in (193) were rescaled to the range (0,1).
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Figure 27. Prefabricated five-storey building of WK-70 type: a) Plan, b) Sectional
elevation and points of vibration measurements

In paper by Ciesielski et al. (1992) the following empirical formula was pro-
posed:

T1
0 98
3 Cz

(194)

where Cz should be substituted from the range [50-300] MPa/m without rescal-
ing Cz.

A similar formula was derived by Kuźniar et al. (2000):

T1
1 2

3 Cz 0 003 s r b
(195)

Because of a small number of patterns P 31 only simple neural networks
were applied for all the used inputs. From among many tested networks only
FLNNs networks of architectures 4-4-1, 2-3-1 and 1-2-1 as well as the number of
their parameters NNP are listed in Table 3.

The total set of patterns used was 100 times randomly split into the training and
testing sets, completed of L 25 and T 6 patterns. In Table 3 the average errors
are shown for 100 training processes. The standard deviation P and coefficient
of correlation r P were computed for the whole set of non-scaled patterns. The
MSE and ARE errors, defined in Appendix as (A1) and (A3), were computed for
the input variables rescaled to the range (0, 1). The output variable was from the
range [0.155, 0.294] sec. so it was not rescaled.

Looking at the results we can see that network (1): 4-4-1 is superior to network
(2): 2-3-1. Both neural networks are much better than empirical formulae (194)
and (195).

Next the PCA method was applied to the reduction of number of inputs. Ap-
plying PCA, described in Point 3.4, the eigenvalues and eigenvectors j, q j were
computed for a covariance matrix S 4 4 . They are presented in Table 4.

As can be seen the errors listed in Table 3 for the more complex network (1)
of structure 4-4-1 are comparable with errors which were obtained by networks
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Table 3. Errors and statistical parameters for different input variables and different
architectures of FLNNs

Table 4. Eigenvalues λ j, relative eigenvalues m j and eigenvectors q j of covariance
matrix S

(3) with only two PC inputs. The same concerns simple networks (2) and (4) with
one PC input. It is interesting that the architectures 2-3-1 give better results for PC
inputs.

In Figure 28 there are shown distributions of measured (target) fundamental
periods tn = T n

1meas [sec.] vs. the periods yn = T n
1PC, predicted by the networks 1-

2-1 and 2-3-1 with the PC single input and double inputs. It is visible that for two
PC inputs ξ1 and ξ2, nearly all the patterns predicted by network 2-3-1 are placed
within the relative error cone Bep = 5%. It is defined as an area of the relative
absolute errors of the network output |1− yn/tn|×100%≤ |Bep|.

On the base of PCA a new empirical formula was derived using only the first
principle component ξ1, see Kuźniar and Waszczyszyn (2007). In Figure 29 there
are shown the pattern points for which the following cubic regressive curve was
computed by means of the LS method:

T1 = 0.238 + 0.08ξ̄1−0.1165ξ̄ 2
1 + 0.03ξ̄ 3

1 , (196)
where

ξ̄1 = (0.0852Cz + 0.0589b + 0.0019s+0.9946r)/100. (197)
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Figure 28. Experimental vs. neurally predicted fundamental vibration periods
computed by networks: a) 1-2-1 and x = ξ1, b) 2-3-1 and x = {ξ1,ξ2}

Figure 29. Fundamental period T1 vs. the first principal component ξ̄1

In Table 3, the errors of prediction of the fundamental period T1 by formula
(196) are listed. The results of prediction of ARE(P),σ(P) and r(P) are better
estimated by formula (196) than those by empirical formulae (194) and (195).

Simulation of DRS for soil-structure interaction problems. Response spectra
are often applied in structural design and for determining dynamic resistance of
existing buildings, cf. e.g. Eurocode 8 (2003). The response spectrum is defined
by means of the motion of a 1DOF oscillator starting from the equation:

ẍ + 2ξ ωiẋ + ω2
i x = −ag(t), (198)

where: ωi = 2π fi = 2π/Ti – angular frequency, Ti = 1/ fi – period of vibrations,
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– damping coefficient, ag t – excitation corresponding to ground acceleration.
Knowing the measured record of accelerations, we can digitize it and use to com-
pute displacements x j x t j for fixed values of frequencies fi or periods of vi-
bration Ti at an assumed damping coefficient .

Then the Displacement Response Spectrum (DRS) can be computed as a func-
tion which maps the natural periods of oscillators into the maximal values of their
displacement response:

Sd Ti max
j

x t j;Ti (199)

In Figure 30 an example of the measured acceleration record and the corresponding
computed DRS are shown.

Figure 30. Measured accelerogram and corresponding computed DRS

The problem of soil-structure interaction is to find a response spectrum DRSb
for the excitation spectrum DRSg, i.e. to make the mapping DRSg DRSb. In
this relation DRSg is a spectrum computed on the basis of measurements made
on the ground level outside the building (measurement point 1 in Figure 27b) and
DRBb is a spectrum for measurements performed inside the building at the base-
ment level (measurement point 2). It is rather a difficult task to compute the motion
of the structure by, for instance FE models. In case of real structures and appli-
cation of FEM there are many serious problems related to modelling of boundary
conditions, connections between structural elements, material relationships, etc. A
number of these issues can be overcome due to ANNs applications, cf. references
in Kuźniar and Waszczyszyn (2007).

The problem discussed is related to medium height (5-storey), prefabricated
buildings in Legnica - Głogów Copperfield, Poland. The buildings were subjected
to paraseismic excitations caused by firings of explosives. Ten accelerograms were
randomly selected from among those measured at monitored buildings. The corre-
sponding discrete values Sdgk and Sdbk were computed for k 1 198 periods
of natural vibrations corresponding to Tk 0 02 1 3 sec.

Using static approach and the temporal window method, the following input
and output vectors were adopted, see Kuźniar (2003):

x 6 1 Sdgk 2 Sdgk 1 Sdgk Sdgk 1 Sdgk 2 Tk y Sdbk (200)
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where: k = 3, ...,196 – index of discrete time for successive vibration periods Ti.
The set of 10 pairs of DRS values {{Sdgk}198

k=1,{Sdbk}196
k=3} was randomly split

into an equal number of 5 training and 5 testing sets, respectively. The correspond-
ing numbers of training and testing patterns were L = T = P/2 = 5×198 = 990.
These patterns were used for training of FLNN shown in Figure 2.4a. The Rprop
learning method was used (cf. Waszczyszyn (1999), p.20) in the applied SNNS
simulator, see Zell et al. (1994). After the cross-validation method was used the
network BPNN: 6-5-1 was designed (the acronim BPNN was used in papers by
Kuźniar (2003) instead of FLNN). The errors of this network of training and test-
ing are shown in Table 5 (acronym BPNN was used in papers by Kuźniar instead
of FLNN applied in this paper).

Table 5. Errors of training and testing for neural predictions of DRSb

The graphics of two selected DRS l#1 and DRS t#3, used for the network
training and testing are shown in Figure 31. The predicted FLNN, corresponding
to the neural network BPNN: 6-5-1 learnt by the Rprop method are marked as
BPNN DRSb.

Application of Kalman filtering. The results quoted below were obtained in
Krok’s PhD dissertation, Krok (2007) and were quoted in the review paper by
Waszczyszyn and Ziemiański (2005). The following sequential values were adopted
as input and output variables:

x(2×1) = {Sdgk−1,Sdbk−1}, y = Sdbk. (201)
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Figure 31. Displacement learning and testing spectra DRS l#1 and DRS t#3, re-
lated to measured spectra at ground and basement levels (input DRSg and target
DRSb), vs. spectra computed by Kalman filtering (DEKF DRSb) and Rprop learn-
ing method (BPNN DRSb)

where: Sdgk 1 – value of DRSg at the ground level for discrete time k 1; Sdbk 1,
Sdbk – values of DRSb at the basement inside the building for k 1 and k discrete
times k 2 3 198.

The autoregressive time-delay input Sdbk 1 was assumed as a variable well fit-
ting the character of the Kalman filtering method. Preliminary computations were
performed using two types of neural networks, discussed in Point 4.2.1, i.e. the
feed-forward network FLNN, and recurrent network RLNN. After introductory
computations, it was stated that FLNN was superior (contrary to another paper
written also on the simulation of Response Spectra, see Krok and Waszczyszyn
(2007)). The training was performed by author’s procedures written in the MAT-
LAB language related to the simulator Neural Network Toolbox for Use with Mat-
lab, see Demuth and Beale (1998).

On the basis of numerical experiments the following functions of the Gaussian
noises were found:

Q k 0 01exp s 1 50 I R k 7exp s 1 50 (202)

where: I – unit matrix of dimension (3 3) for the j 1 2 5 neurons of the
hidden layer and (6 6) matrix for the output; s – number of the epoch in training
process. The stopping criterion was established with respect to the fixed number of
epochs S corresponding to the testing error MSE T . After introductory com-
putations the stopping criterion was related to S 500 assuming adm 1 10 4.

Training of network FLNN: 2-5-1 (in Figures 31 the corresponding results are
marked as BPNN DRSb) was performed using the algorithm DEKF as a learning
method. The same training sets were used as those discussed in the previous point
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where network BPNN: 6-5-1 was trained by means of the Rprop learning method.
Training and testing errors are listed in Table 5 and corresponding graphics of
selected DRS are shown in Figure 31.

Bayesian approaches. The results quoted below are mainly taken from paper by
Waszczyszyn and Słoński (2006). They have recently been completed by Słoński
with respect to the design of optimal neural networks.

In order to apply the criterion MML (Maximum of Marginal Likelihood) for
the total number of ten DRS the curve ln p was first plotted using formula
(154). In this formula the number of weights W corresponds to the number of hid-
den neurons H in the network FLNN: 2-H-1. In the introductory computation the
following values of hyperparameters were found 2 58 and 2710. These
values were kept constant during the computation. Then Type-II ML approxima-
tion, described in short in Point 5.8, was used. Starting from the Gaussian pd, the
following optimal values of hyperparameters opt 2 53 and opt 1980 were
computed.

In Figure 32 the plots of ln Mal H; are shown for the number of training
data sets of patterns L 5 and 10. These sets fully correspond to sets used in the
computations carried out in paper by Waszczyszyn and Słoński (2006). From the
plots we can conclude that the optimal number of neurons equals HMal

opt 4 for the
total number of sets L P 10 and HMal

opt 3 only if the training L 5 sets are
applied.

Figure 32. Marginal Likelihood Curves lnMal H; computed for L 5 and L
P 10 sets of patterns and validation error curve E H w;5 for the network
FLNN: 2-H-1
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In the same figure the validation plots E H w;5 are drawn for 5 validation
sets and various vectors of weights. The vector wML was computed by means
of standard NN using the conjugate gradient learning method but without the pe-
nalized weight-delay function (this corresponds to the application of SNN/ML
method listed in Table 2). The vector wMAP was computed by the Bayesian net-
work SNN/MAP in which the method of Maximum A Posterior was explored. It
is visible that from the cross-validation method point of view the optimal value
(minimum of the function E H w;5 corresponds to HVal

opt 5 but the values
H 2 4 could also be acceptable. That is why the computations were carried
out for the hidden neuron numbers H 3 5 and the obtained errors are listed in
Table 5.

Results of two Bayesian approaches are presented in Table 5. These approaches
are defined according to Table 2. The Simple Bayesian network S-BNN is based
on the deterministic values of hyperparameters, which were iteratively updated. In
the analyzed network the initial values of those parameters were in 2 58 and

in 1 2
in 2710 were updated to values opt 2 58 and opt 1 2

opt 1980.
The NETLAB simulator (see Nabney (2004)) and the FBM procedures (see Neal
(2004)), were used. The Hybrid Monte Carlo method of numerical integration
(without persistence) and Gibbs sampling were applied.

The errors related to application of all the networks discussed above are shown
in Table 5. Looking at them we can conclude that results obtained by S-BNNs
and T-BNNs are very close to each other. Moreover, the complexity of neural
networks does not affect results of computations. Such a conclusion is valid only
for the data sets used. The application of 10 records seems to be too small to draw
more general conclusions.

Plots of target and Bayesian inference predictions are shown in Figure 33 for
the same DRSs as those in Figure 31, taken from paper by Waszczyszyn and
Słoński (2006). Besides the means also 2 t error bounds are plotted. It is visi-
ble that an excellent fitting of these curves to target means of DRSb takes place.

6.2 Analysis of hysteresis loops for a super-conducting cable

The Kalman filtering was applied in multilayer neural networks for the analysis
of hysteresis loops which occur in materials and structural elements subjected to
cyclic loading. This approach was developed in Krok’s PhD dissertation, Krok
(2007), in which hysteresis loops for concrete and steel specimens were simulated
and predicted. A part of dissertation, published by Krok in paper Krok (2006),
was devoted to a special problem related to the analysis of hysteresis loops in a
super-conductor cable, placed in a cryogenic box and subjected to cyclic pressure.

The superconductor was designed for the International Experimental Reactor,
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Figure 33. Displacement Response Spectra, target and computed by S-BNN for:
a) set l#1, b) testing set t#3

(ITER), see the website www.iter.org. The scheme of cable cross-section and me-
chanical stand-up are shown in Figure 34. Measured hysteresis loops are shown
in Figure 35a. These Figures were taken from the report by Nijihuis et al. (1998).
In Figure 35a, nine representative cycles (with Nos 1 6 11 21 and 38) were
plotted, from among 38 cycles carried-out.

Figure 34. a) Cable blocks, steel jacket and cooling tube, b) Tested cable

These experimental results, taken from the above quoted report, were analysed
in many papers, see references in book by Lefik (2005). The standard, multilayered
neural networks were also applied, see Lefik and Schrefler (2002). Results of
an extensive numerical analysis were described by Krok (2007). She focused on
selection of input variables and applied the Kalman Filtering algorithm DEKF for
learning of networks FLNN and RFLN, see Figure 13.

Following the approach by Lefik and Schrefler (2002), the hysteresis loops can
be plotted using discrete time k, numbering a sequence of K 244 points, marked
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in Figure 36. After such a mapping onto time domain the Kalman filtering can be
applied in a similar manner as shown in Point 6.1. The patterns were defined to
pairs Fk dk , where: Fk dk – force and transversal displacement at the k-th instant.

Figure 35. Hysteresis loops taken from: a) Laboratory testing, b) Neural simula-
tion

Following the paper by Lefik and Shrefler quoted above, three selections of
training and testing patterns were adopted:

a) 25% or 50% of all 244 patterns were randomly selected for testing;
b) the first seven loops containing L = 180 patterns were used for training and

three final loops with T = 64 patterns served for testing;
c) two first loops containing T = 35 patterns were used for testing and the

remaining seven loops with L = 209 patterns were explored for training.
The starting inputs and output were completed from the data pairs:

x 3 1 Fk Fk 1 dk y dk 1 (203)

In the input vector the time-delay, autoregressive variable dk was applied. All the
values were rescaled to the range (0,1).

In Krok’s paper various combinations of four inputs were analysed. From
among them what superior was the following input vector:

x 4 1 Fk 1 dk 1 k 244 l k (204)

Besides conserving of the time-delay input dk, a variable l k was introduced.
It corresponds to the subsequent values: 1-1/N(1), 1-2/N(2), 1-N l N l , where
N l is the total number of measurements in the l-th loop. It is worth mentioning
that the 4-th input parameter of a loop switching character was also introduced by
Lefik and Schrefler (2002).

In Table 6 MSE errors are shown for selected networks, taken from paper by
Krok (2006). Results shown in the Table follow three cases of the testing patterns
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Figure 36. Extended hysteresis loops for testing patterns: a) 25% random selec-
tion, b) two first loops

selection. Only two architectures of networks were selected, i.e. 3-15-1 and 4-
4-5-1, corresponding to inputs (203) and (204). The numbering of study cases
corresponds to that in Krok’s paper.

Table 6. Testing errors for different networks with Kalman filtering applied to the
analysis of hysteresis loops in super-conducting cable

Two hidden layer network 4-4-5-1 has the number of network parameter NNP
= 51, whereas the network 3-15-1 has NNP = 76 for FLNN and NNP = 92 for
RLNN. The testing errors are comparable for cases a) and b) but the MSE(T ) error
for c) is significantly higher. The influence of the testing set selection is visible in
Figure 36. The testing fitting curves are very close to the target curves in cases a)
and b). In case c) the predicted curve for the first three loops does not fit well the
target curve shown in Figure 36b.
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6.3 Bayesian inference in the microstructure analysis

A great deal of attention is devoted to multiscale analysis of heterogeneous mate-
rials. Computational Homogenization (CH) has been quite recently proposed as
a method based on the advanced computer hard- and software, see e.g. PhD dis-
sertations by Kouznetsova (2002) and Kaczmarczyk (2006). CH is a two levels
approach in which refined mechanical formulation is applied on the microscale
level and the implicit formulation is used on the macroscale level of observa-
tion. The microlevel is represented by RVE (Representative Volume Element)
which is placed in an integration point of the Finite Element, representative for the
macrolevel, see Figure 37.

Figure 37. a) Main scheme of Computational Homogenization, b) Micro-macro
transition

The analysis of RVE plays a basic role in CH. In this area the basic question
concerns the identification of characteristics of RVE. Among them the characteris-
tic length L of RVE should be defined and, moreover, its value should be estimated.
The paper by Kaczmarczyk and Waszczyszyn (2007) focused on computation of
the characteristic length L of a plane RVE shown in Figures 38, 40 applying FEM
and Bayesian inference explored in the T- BNN network.

The characteristic length L reflects the micro-macro scales interaction, me-
chanical properties of microstructure ingredients and nonlinear deformations on
the micro-macro levels. These effects can be experimentally tested by means of
the indentation test, see Figure 39a. A rigid indenter is pressed in a deformable
matrix, so a great stress concentration and deformation localization occur in the
vicinity of indenter application. These phenomena need a great increase of the FE
mesh density in the stress and deformation regions, see Figure 39b.

The plain strain Boundary-Value-Problems (BVPs) were formulated on the
micro- and macro levels. It was assumed that the aluminium matrix has elasto-
plastic properties and the inclusions are made of elastic silicon (their mechanical
parameters are shown in Figure 38). The second order continuum with micros-
trains was assumed to analyze the RVE deformation. The displacement boundary
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Figure 38. a) Discretization of RVE, b) Deformation of RVE in the vicinity of
indenter

constraints for RVE were applied and friction between the indenter and the de-
formable continuum was neglected.

A sequence of BVPs was analysed performing 34 incremental steps h to com-
pute the equilibrium paths F h , where: F , h – force and vertical displacements
shown in Figure 39a. A deformation of RVE in the vicinity of the indenter appli-
cation is shown in Figure 38b. The equilibrium paths were computed for three,
fixed in advance, values of the length L = 0.001, 0.002 and 0.004 mm.

The vector of sequential input variables was composed of 105 variables:

x 105 1 h1 h2 h35 F1 F2 F35 s1 s2 s35 (205)

where s is the width of indenter adherence to deformable continuum, see Fig-
ure 39a.

Prior distribution of the characteristic length p L was estimated by Gamma
pdf assuming in (178) L, a 2 and b 0 5. It is worth noting that this prior
has no reference to any data and prior estimation about what the true relationship
might be.

Assuming three input variables, i.e. x h F s , a set of 344 pseudo-experiments
was formulated performing 34 incremental steps corresponding to input vector
(205). In order to diminish the dimensionality of the input space the PCA method
was applied. This analysis gave the following eigenvalues

1 0 055 2 8 69 10 6
3 4 83 10 6 (206)

In the following analysis only one PC, i.e. 1 h F s was conserved.
The Bayesian neural network T-BNN: 1-16-1 was applied and randomly se-

lected, the training and testing sets were used, composed of L 200 and T 144
patterns, respectively. The training process, corresponding to the Bayesian infer-
ence, was preceded according to that described in Point 6.1. In Figure 40 the
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Figure 39. a) Indentation test, b) Increase of FE mesh density in the vicinity of
indenter application

relationship L̄ 1 is shown for the mean and 3 t 3 N 3 L. It is visible that
the distance between sigma bar curves is small in the region with a great amount
of data.

Figure 40. a) Mean and 3 sigma bar curves for relation L̄ 1 computed by T-BNN
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6.4 Selected problems from mechanics of concrete
In this Point two problems from mechanics of concrete are briefly discussed. The
first problem concerns the design of High Performance Concrete (HPC) mixes
from the point of view of concrete strength f ′c prediction. The other problem deals
with estimation of the failure number of loading cycles applied to specimens made
of ordinary concretes. In both presented problems the focus is put on applications
of BNNs.

HCP strength prediction. The prediction of compressive strength f ′c of High Per-
formance Concrete (HPC) by the standard NNs and BNNs is discussed in paper by
Słoński (2007). 28 data sets composed of 346 mixes, collected by Kasperkiewicz
et al. (1995), were used. The HPC data bases are related to six input variables and
an output scalar variable:

x = {C,W,S,Su,FA,CA}, y = f ′c, (207)

where the input variables are amounts of the concrete mix ingredients in kg/m3,
corresponding to: C – cement, W – water, S – silica, Su – superplasiticizer, FA
– fine aggregate, and CA – coarse aggregate. The output variable is the 28-day
compressive strength f ′c [MPa].

The regression problem of HPC strength prediction was analysed in many pa-
pers, using also ANNs, see references in the PhD dissertation by Jakubek (2007).
Now let us concentrate on the application of the Bayesian networks FLNN/MAP
and T-BNN, see paper by Słoński (2009).

The network FLNN: 6-10-1 with bipolar sigmoid hidden neurons and linear
output was used. The NETLAB Toolbox, see Nabney (2004) and MCMCStuff
Toolbox, see Vehtari and Vanhatalo (2006) were used to both learn the networks
FLNN, T-BNN and GP-BNN. The total number of patterns P = 340 was randomly
split into the training and testing sets with L = 226 and T = 114 patterns, re-
spectively. In the case of SNN the conjugate gradient method was applied and
the computed weight vector wMAP gave values of errors and statistical parameters
listed in Table 7.

Table 7. Errors of training and testing processes for neural prediction of HPC
strength

72
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For Bayesian neural network T-BNN, Gaussian noise model with constant vari-
ance was defined and hierarchical Gaussian prior was assumed. Learning and pre-
diction were done using Gibbs sampling for hyperparameters and Hybrid Monte
Carlo (HMC) method for weights. The MCMCStuff Toolbox software was ap-
plied, see Vehtari and Vanhatalo (2006). The main HMC parameters had the fol-
lowing values: length of chain was 100, step size was 0.5 and persistence param-
eter was 1.0. The burn-in stage contained 204 iterations and the actual sampling
800 iterations from which only 18 samples were used for HPC prediction.

The computations by T-BNN gave the values of errors and statistical parame-
ters presented in Table 7.

For testing patterns also 1 error bars were computed, corresponding to the
estimated noise standard deviation ( BNN 7 3 MPa vs. SNN 7 7 MPa). In
Figure 41 the measured and computed values for both neural models are presented.
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Figure 41. Predicted HPC compressive values vs. measured values using neural
networks T-BNN (left) and FLNN/MAP (right)

On the base of discussed case study for HPC strength prediction some conclu-
sions can be drawn. The Bayesian approach gave significantly better prediction of
the mean value of HPC compressive strength comparing with predictions by the
standard FLNNs. On the other hand, computations for Bayesian neural network
T-BNN is much more labour-consuming than for the standard neural model.

Concrete fatigue failure prediction. The second example concerns prediction of
concrete fatigue failure using the true Bayesian neural network T-BNN and Gaus-
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sian Process model GP-BNN, see Słoński (2006, 2009). Concrete failure is defined
as a number of loading cycles N which cause fatigue damage of a plain concrete
specimen. This problem is based on a data set of 216 tests on concrete specimens,
made in eight laboratories, see Furtak (1984). The patterns were randomly split
into the training and testing sets with L = 144 and T = 72 patterns, respectively.

Following this paper, four input variables and a scalar output were adopted:

x = { fc,χ ,R, f}, y = logN, (208)

where: χ = fcN/ fc – ratio of compressive fatigue strength of concrete fcN and
strength fc, R = σmin/σmax – ratio of minimal and maximal strengths in compres-
sive cycle of loading, f [Hz] – frequency of cyclic loading, N – number of load
cycles associated with the fatigue failure.

Network FLNN: 4-7-1 was used of structure and neuron type selection as the
network used in the problem discussed above. The GP model was defined using a
squared exponential covariance function with the kernel components of the form
similar to that defined in (183):

k(xn,xm) = θ0 exp
�

− 1
2

4

∑
i=1

ηi(xn
i − xm

i )2
�

+ θ2. (209)

Both Bayesian approaches, i.e Bayesian inference and Gaussian Process in the
networks T-BNN and GP-BNN were applied. The computations were carried out
by means of the NETLAB Toolbox, see Nabney (2004) and MCMCStuff Toolbox,
see Vehtari and Vanhatalo (2006). In Table 8 the values of errors and statistical
parameters are listed.

Table 8. Comparison of learning and testing errors and statistical parameters for
standard network FLNN, Bayesian network T- BNN and Gaussian process based
network GP-BNN

The true Bayesian neural network T-BNN and the network GB-BNN basing
on the Gaussian process have very similar prediction capabilities, see Figure 42. It
is worth emphasizing that learning and prediction for GP model is much easier to
implement than for T-BNN.
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Figure 42. Predicted vs. measured fatigue failure of concrete for training and
testing patterns for T-BNN (left) and GP-BNN (right)
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Appendices

A1 Definitions of Errors for Discrete Sets of Data

The following error measures are used:
– Mean-Square-Error (MSE) and Root-Mean-Square error (RMS):

MSE 2
ML

2
LS

2
MAP

1
N

N

n 1
tn y xn;w 2 (A1)

RMS MSE ML LS MAP

1
N

N

n 1
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– Average Absolute Relative Error (ARE)

ARE
1
N

N

n 1
1 yn tn 100% (A3)

– Coefficient of correlation (linear regression)
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N
n 1 xn x̄ 2 N

n 1 yn ȳ 2
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A2 Acronyms
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Abstract This article presents recent applications of neural 
computations in the field of stochastic finite element analysis of 
structures and earthquake engineering. The incorporation of Neural 
Networks (NN) in this type of problems is crucial since it leads to 
substantial reduction of the excessive computational cost. Earthquake-
resistant design of structures using Probabilistic Safety Analysis (PSA) 
is an emerging field in structural engineering. The efficiency of soft 
computing methodologies is investigated when incorporated into the 
solution of computationally intensive earthquake engineering problems 
considering uncertainties. 

1 Introduction 
Over the last ten years artificial intelligence techniques like Neural Networks 
(NN) have emerged as a powerful tool that could be used to replace time 
consuming procedures in many scientific or engineering applications. The fields 
where NN have been successfully applied are: (i) pattern recognition, (ii) 
regression (function approximation/fitting) and (iii) optimization. In the past the 
application of NN was mostly used for predicting the behavior of structural 
systems in the context of structural optimal design (McCorkle et. al 2003, 
Papadrakakis and Lagaros 2002], structural damage assessment (Zacharias et. al 
2004), the evaluation of buckling loads of imperfect structures (Waszczyszyn et 
al. 2002) or structural reliability analysis (Hurtado and Alvarez 2002, Nie and 
Ellingwood 2004,Papadrakakis et al. 1996). This study presents recent 
developments in the applications of NN in the field of stochastic finite element 
and probabilistic analysis of structures. 

Many sources of uncertainty (material, geometry, loads, etc) are inherent in 
structural systems. Probabilistic analysis of structures leads to safety measures 
that a design engineer has to take into account due to the aforementioned 
uncertainties. Probabilistic analysis problems, especially when seismic loading 
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is considered, are highly computationally intensive tasks since, in order to 
obtain the structural behaviour, a large number of dynamic analyses (e.g modal 
response spectrum analysis, or nonlinear timehistory analysis) are required. In 
this work two metamodel-based applications are considered in order to reduce 
the excessive computational cost. The efficiency of a trained NN is 
demonstrated, where a network is used to predict maximum interstorey drift 
values due to different sets of random variables. As soon as the maximum 
interstorey drift is known, the limit-state probabilities are calculated by means of 
Monte Carlo Simulation (MCS). In the first application the probability of 
exceedance of a limit-state is obtained when the Multi-modal Response 
Spectrum analysis is adopted (Tsompanakis et al. 2008). In the second 
application fragility analysis of a ten-storey moment resisting steel frame is 
evaluated where limit-state fragilities are determined by means of nonlinear time 
history analysis (Lagaros and Fragiadakis 2007). 

The field of structural reliability has been developed significantly during the 
last twenty years and has been documented in an increasing number of 
publications (Schuëller 2005). In this work the probabilistic safety analysis of 
framed structures under seismic loading conditions is investigated based on the 
methodology proposed by Lagaros and Fragiadakis (2007). Both randomness of 
ground motion excitation (that influence the seismic demand level) and material 
properties (that affect the structural capacity) are taken into consideration. 
Additionally, a computationally efficient procedure, proposed in a previous 
work by Lagaros et al. (2005), for the simulation of homogeneous non-Gaussian 
stochastic fields with prescribed target marginal distribution and spectral density 
function is implemented. 

The assessment of the bearing capacity of framed structures, in terms of 
maximum interstorey drift, is determined via non-linear time history analysis. 
Probabilistic Safety Analysis (PSA) using the Monte-Carlo Simulation (MCS) 
method and non-linear time history analysis results in a highly computationally 
intensive problem. In order to reduce the computational cost, NN are employed. 
For the training of the NN a number of Intensity Measures (IMs) are used in 
order to accurately predict the maximum interstorey drift values. The IMs 
adopted in the present study can be classified either as seismic record 
dependent, or as both structure and record dependent. Via the presented PSA 
procedure fragility curves are obtained for different hazard levels. In addition 
the probability of structure’s failure is derived as a limit state function of 
seismic intensity. 

2    Multi-layer Perceptrons 
A multi-layer perceptron is a feed-forward neural network consisting of a 
number of units (neurons) linked together. Training attempts to create a desired 
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relation in an input/output set of learning patterns. A learning algorithm tries to 
determine the weight parameters, in order to achieve the right response for each 
input vector applied to the network. The numerical minimization algorithms 
used for the training generate a sequence of weight matrices through an iterative 
procedure. To apply an algorithmic operator A a starting weight matrix w(0) is 
needed, while the iteration formula can be written as follows 

 (t+1) (t) (t) (t)w = (w )=w +�wA  (1) 

All numerical methods applied for the NN training are based on the above 
formula. The changing part of the algorithm �w(t) is further decomposed into 
two parts as 

 
(t) (t)

t�w =a d  (2) 

where d(t) is a desired search direction of the move and at the step size in that 
direction.  

The training methods can be divided into two categories. Algorithms that use 
global knowledge of the state of the entire network, such as the direction of the 
overall weight update vector, which are referred to as global techniques. In 
contrast, local adaptation strategies are based on weight specific information 
only, such as the temporal behaviour of the partial derivative of this weight. The 
local approach is more closely related to the NN concept of distributed 
processing in which computations can be made independent to each other. 
Furthermore, it appears that for many applications local strategies achieve faster 
and reliable prediction than global techniques despite the fact that they use less 
information (Schiffmann et al. 1993). 

2.1 Global Adaptive Techniques 

The algorithms most frequently used in the NN training are the steepest descent, 
the conjugate gradient and the Newton’s methods with the following direction 
vectors: 
Steepest descent method: (t) (t)d (w )� �PE  
Conjugate gradient method: (t ) ( t ) ( t 1)

t 1d (w ) d �
�� �P � QE  where �t-1 is defined as: 

 t 1 t t t 1 t 1/  Fletcher-Reeves� � �Q � R RE E E EP P P P  

Newton’s method: 
1(t ) ( t ) ( t )d H(w ) (w )

�
* +� � P/ 0 E . 

The convergence properties of the optimization algorithms for differentiable 
functions depend on the properties of the first and/or second derivatives of the 
function to be optimized. When optimization algorithms converge slowly for 
NN problems, this suggests that the corresponding derivative matrices are 
numerically ill-conditioned. It has been shown that these algorithms converge 
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slowly when rank-deficiencies appear in the Jacobian matrix of a NN, making 
the problem numerically ill-conditioned (Lagaros and Papadrakakis 2004). 

2.2 Local Adaptive Techniques 

To improve the performance of weight updating, two approaches have been 
proposed, namely Quickprop (Fahlman 1988) and Rprop (Riedmiller and Braun 
1993). 

The Quickprop method 
This method is based on a heuristic learning algorithm for a multi-layer 
perceptron, developed by Fahlman (1988), which is partially based on the 
Newton’s method. Quickprop is one of most frequently used adaptive learning 
paradigms. The weight updates are based on estimates of the position of the 
minimum for each weight, obtained by solving the following equation for the 
two following partial derivatives 

 

t-1 t

ij ij

 and 
w w

F F
F F
E E

 (3) 

and the weight update is implemented as follows 

 

t

ij(t) (t-1)
ij ij

t-1 t

ij ij

w
w w  

-  
w w

F
F

# � #
F F
F F

E

E E

 (4) 

The learning time can be remarkably improved compared to the global adaptive 
techniques. 

The Rprop method 
Another heuristic learning algorithm with locally adaptive learning rates based 
on an adaptive version of the Manhattan-learning rule and developed by 
Riedmiller and Braun (1993) is the Resilient backpropagation abbreviated as 
Rprop. The weight updates can be written 

 (t) (t) t
ij ij

ij

w � sgn
w

� �F
# � � � �� �F� �

E
 (5) 

where 
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(t-1) t t-1
ij max

ij ij

(t) (t-1) t t-1
ij ij min

ij ij
(t-1)
ij

min(# � ,� ),  if 0
w w

� max(b � ,� ),  if 0  
w w

� ,  otherwise

F F	 R R N� F F�
� F F�� R R "�

F F�
�
�
��

E E

E E

 (6) 

where �=1.2, b= 0.5, �max=50 and �min=0.1 (Riedmiller, 1994). The learning 
rates are bounded by upper and lower limits in order to avoid oscillations and 
arithmetic underflow. It is interesting to note that, in contrast to other 
algorithms, Rprop employs information about the sign and not the magnitude of 
the gradient components. 

3 Fragility Analysis using Monte Carlo Simulation 
Extreme earthquake events may produce extensive damage to structural systems 
despite their low probabilities of occurrence. It is therefore essential to establish 
a reliable procedure for assessing the seismic risk of real-world structural 
systems. Probabilistic safety analysis provides a rational framework for taking 
into account the various sources of uncertainty that may influence structural 
performance under seismic loading conditions. The core of PSA is seismic 
fragility analysis, which provides a measure of the safety margin of a structural 
system for different limit states. 

In this section the probabilistic safety analysis of framed structures under 
seismic loading conditions is investigated. Randomness of ground motion 
excitation (that influences seismic demand) and of material properties (that 
affect structural capacity) are taken into consideration using Monte Carlo 
Simulation. The capacity assessment of steel frames is determined using 
nonlinear timehistory analysis. The probabilistic safety analysis using Monte-
Carlo Simulation and nonlinear time history analysis results in a 
computationally intensive problem. In order to reduce the excessive 
computational cost, techniques based on NN are implemented. For the training 
of the NN a number of IMs are derived from each earthquake record, for the 
prediction of the level of damage, which is measured by means of maximum 
interstorey drift values �max. 

 
The seismic fragility of a structure FR(x) is defined as its limit-state 

probability, conditioned on a specific peak ground acceleration, spectral 
velocity, or other control variable consistent with the specification of seismic 
hazard 
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 ( ) [ / ]R iF x P LS PGA x� �  (7) 

where LSi represents the corresponding ith limit state and the peak ground PGA 
is the control variable. If the annual probabilities of exceedance P[PGA=x] of 
specific levels of earthquake motion are known, then the mean annual frequency 
of exceedance of the ith limit state is calculated as follows: 

 [ ] ( ) [ ]i R
x

P LS F x P PGA x� ��  (8) 

Eq. (8) can be used for taking decisions about, for example, the adequacy of a 
design or the need to retrofit a structure. In the present study the aim is to 
evaluate the fragility FR(x). Once the fragility is calculated the extension to Eq. 
(8) is straightforward.  

Often FR(x) is modelled with a lognormal probability distribution, which 
leads to an analytic calculation. In the present study Monte Carlo Simulation 
(MCS) with improved Latin Hypercube Sampling (iLHS) for the reduction of 
the sampling size, is adopted for the numerical calculation of FR(x). Numerical 
calculation of Eq. (7) provides a more reliable estimate of the limit state 
probability, since it is not necessary to assume that seismic data follow a 
lognormal distribution. However, in order to calculate the limit state probability, 
a large number of nonlinear dynamic analyses are required for each hazard 
level, especially when the evaluation of extremely small probabilities is needed. 

The methodology requires that MCS has to be performed at each hazard 
level. Earthquake records are selected randomly and scaled to a common 
intensity level that corresponds to the hazard level examined. Scaling is 
performed using the first mode spectral acceleration of the 5% damped spectrum 
(Sa(T1,5%)). Therefore, all records are scaled in order to represent the same 
ground motion intensity in terms of Sa(T1,5%). Earthquake loading is 
considered as two separate sources of uncertainty, ground motion intensity and 
the details of ground motion. The first uncertainty refers to the general severity 
of shaking at a site, which may be measured in terms of any IM such as PGA, 
Sa(T1,5%), Arias intensity, etc. The second source refers to the fact that, 
although different acceleration time histories can have their amplitudes scaled to 
a common intensity, there is still uncertainty in the performance, since IMs are 
imperfect indicators of the structural response. The first source is considered by 
scaling all records to the same intensity level at each limit state. The second 
source is treated by selecting natural records as random variables from a 
relatively large suite of scenario based records. The concept of considering 
separately seismic intensity and the details of ground is the backbone of the 
Incremental Dynamic Analysis (IDA) method (Vamvatsikso and Cornell 2002), 
while Porter et al. (2002) have also introduced intensity and different records as 
two separate uncertain parameters in order to evaluate the sensitivity of 
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structural response to different uncertainties. 
The random parameters considered in this study are the material properties 

and more specifically the modulus of elasticity E and the yield stress fy, as well 
as the details of ground motion where a suite of scenario based earthquake 
records is used. The material properties are assumed to follow the normal 
distribution while the uniform distribution is assumed for the records in order to 
select them randomly from a relatively large bin of natural records. The first two 
variables are sampled by means of the iLHS technique in order to increase the 
efficiency of the sampling process. 

In reliability analysis the MCS method is often employed when the 
analytical solution is not attainable and the failure domain can not be expressed 
or approximated by an analytical form. This is mainly the case in problems of 
complex nature with a large number of basic variables where all other reliability 
analysis methods are not applicable. Expressing the limit state function as 
G(x)<0, where x=(x1,x2,...,xM)T is the vector of the random variables, the 
probability of exceedance can be obtained as 

 LS x
G(x) 0

P f (x)dx
!

�   (9) 

where fx(x) denotes the joint probability of failure for all random variables. 
Since MCS is based on the theory of large numbers (N5) an unbiased estimator 
of the probability of failure is given by 

 
N

LS j
j 1

1P I(x )
N

5

�5

� �  (10) 

where I(xj) is a Boolean vector indicating failure and non-failure simulations. In 
order to estimate PLS an adequate number of Nsim independent random samples 
is produced using a specific probability density function for the vector x. The 
value of the failure function is computed for each random sample xj and the 
Monte Carlo estimation of PLS is given in terms of the sample mean by 

 H
LS

sim

N
P

N
S  (11) 

where NH is the number of failure simulations, where the maximum interstorey 
drift value exceeds a threshold drift for the limit state examined. In order to 
calculate Eq. (11) Nsim nonlinear time history analyses have to be performed at 
each hazard level. Clearly the computational cost of performing so many 
nonlinear dynamic analyses, even when an efficient sampling reduction 
technique (such as iLHS) is used, is prohibitive. In order to reduce the 
computational cost, properly trained NN are implemented. 
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et al.

Table 1

PGA
SaC
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Table 2.

PGA

4 NN-based Seismic Fragility Analysis 
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Table 3.

Figure 1.
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5 Metamodel Assisted Methodology for Validating the EC8 
Approach

et al.

5.1 Metamodel Assisted Methodology 
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Figure 5.

5.2 Seismic Probabilistic Analysis 
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