
www.manaraa.com

www.manaraa.com

www.manaraa.com

CISM COURSES AND LECTURES

Series Editors:

The Rectors
Giulio Maier - Milan

Jean Salençon - Palaiseau
Wilhelm Schneider - Wien

The Secretary General
Bernhard Schrefler - Padua

Executive Editor
Paolo Serafini - Udine

The series presents lecture notes, monographs, edited works and
proceedings in the field of Mechanics, Engineering, Computer Science

and Applied Mathematics.
Purpose of the series is to make known in the international scientific
and technical community results obtained in some of the activities

organized by CISM, the International Centre for Mechanical Sciences.

www.manaraa.com

INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES

COURSES AND LECTURES - No. 512

ADVANCES OF SOFT COMPUTING
IN ENGINEERING

EDITED BY

 ZENON WASZCZYSZYN
 RZESZOW AND CRACOW UNIVERSITIES

OF TECHNOLOGY, POLAND

www.manaraa.com

This volume contains 215 illustrations

This work is subject to copyright.
All rights are reserved,

whether the whole or part of the material is concerned
specifically those of translation, reprinting, re-use of illustrations,

broadcasting, reproduction by photocopying machine
or similar means, and storage in data banks.

© 2010 by CISM, Udine
Printed in Italy
SPIN 12775583

All contributions have been typeset by the authors.

ISBN 978-3-211-99767-3 SpringerWienNewYork

www.manaraa.com

PREFACE

An increasing interest in the neural networks and soft computing is visible in
sciences and engineering. Just in this field, two CISM Advanced Schools were
organized in 1998 and 2003. The corresponding books were published as CISM
Courses and Lectures Nos 404 and 496. The first book was written on neural
networks in the analysis and design of structures. Chapter 7 of the other book
was devoted to applications of neural networks to the identification of structural
mechanics problems.

The present book corresponds to six cycles of lectures given at the CISM
Advanced School on Advances of Soft Computing in Engineering, held in Udine,
Italy on October 8-12, 2007. The lectures were delivered by invited professors
from six different universities.

The first three Chapters are based on soft methods related to genetic and
evolutionary algorithms. Next to the theoretical and algorithmic background,
many engineering applications are discussed and, especially, those addressed to
civil and mechanical engineering are worth emphasizing. The next three
Chapters are devoted to neural networks (NNs) and their engineering
applications. Beside the standard, deterministic NNs also probabilistic and,
especially, Baysian NNs are discussed. Their applications in mechanics of
structures and materials are presented from the viewpoint of civil, seismic and
mechanical engineering problems.

The organizers of the School and editors of this book wish to express they
cordial thanks to the invited lecturers (Professors Tadeusz Burczy�ski of
Silesian University of Technology, Poland, Jamshid Ghaboussi of University of
Illinois at Urbana-Champain, USA, Manolis Papadrakakis of National
University of Athens, Greece, John Miles of Cardiff University, UK, Vassili
Toropov of University of Leeds, UK) for their effort at delivering lectures and
preparing the camera ready manuscripts. We would like to thank very much
Professor Giulio Maier, Rector of CISM, for his enthusiasm, help and keen
support in the organization of the School and to Professor Paolo Serafini for his
constant help in the editorial work.

Zenon Waszczyszyn

Marek S�o�ski

www.manaraa.com

CONTENTS

PREFACE

CHAPTER 1
Genetic algorithms for design
by J. Miles..1

CHAPTER 2
Evolutionary and immune computations in optimal design and
inverse problems
by T. Burczy�ski…………………………………………………57

CHAPTER 3
Applications of GA and GP to industrial optimization problems
and inverse problems
by V.V. Toropov, L.F. Alvarez and O.M. Querin………………133

CHAPTER 4
Advances in neural networks in computational mechanics and
engineering
by J. Ghaboussi…………………………………………………191

CHAPTER 5
Selected problems of artificial neural networks development
by Z. Waszczyszyn and M. S�o�ski……………………………...237

CHAPTER 6
Neural networks: some successful applications in computational
mechanics
by M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis……….317

www.manaraa.com

CHAPTER 1

Genetic Algorithms for Design

John Miles

Cardiff School of Engineering
Cardiff University, UK

Abstract. The chapter covers two main areas, these being an introduction
to the technology and techniques associated with genetic algorithms and
then the second part looks at how genetic algorithms can be used to search
for good topological solutions to engineering design challenges. The start
of the chapter places genetic algorithms in context compared to other evo-
lutionary algorithms and also describes the reasons why genetic algorithms
are potentially useful. This is then followed by a look at the concept of
a search space. Section two looks at the canonical genetic algorithm as
a basic introduction to the technology and includes an examination of the
main techniques used to encode the genome, fitness functions, operators
and selection. Section three looks at how genetic algorithms can be used
for design and chooses the specific example of the conceptual design of
commercial office buildings. Section four introduces the basic concepts of
topological search and explains how having the right form of representa-
tion is vital before looking at example relating to structural components and
the design of domes using a genetic algorithm linked to computational ge-
ometry techniques. The final section then looks at further methods using
generative representations and generative geometries as possible solutions
to the need to develop powerful forms of representation for handling topo-
logical search in genetic algorithms.

1 Introduction

Genetic Algorithms belong to a group of techniques which are generally described
by the collective term evolutionary computation. The other techniques within
this group include genetic programming, evolutionary strategies, evolutionary pro-
gramming and particle swarm analysis. The defining features of this group of
algorithms are:

Their usage of a stochastic search process employing a population of solu-
tions rather than one point at a time;

www.manaraa.com

2 J. Miles

Their requirement for relatively little information about the nature of the
problem being solved;

Their ability to avoid premature convergence on local optima;

Their ability to cope with constraints;

Their ability to cope with problems involving many objectives.

In general, genetic algorithms are robust and applicable to a wide range of prob-
lems, although one must always bear in mind the findings of Wolpert and MacReady
(1997) that there is no single algorithm that will perform well on all problems.

Generally, genetic algorithms are thought of as an optimization technique but
this is somewhat misleading. Although they are generally an excellent method for
finding good solutions which are close to the optimum, they often fail to find the
actual optimum. For most problems, especially in Engineering, getting close to
the optimum is sufficient and the performance of genetic algorithms is such that
they generally outperform other algorithms.

If it is desirable to find the optimum, rather than an answer which is very close
to it, then a successful method is to use a genetic algorithm to get close to the
optimum and then a technique such as hill climbing to search around the solution
found by the genetic algorithm to find the desired solution.

There is another useful feature of genetic algorithms which is rarely used but
which is very powerful. This is their ability to explore a search space (i.e. the space
of all possible solutions) rather than look for a single ”‘best”’ solution. For many
problems, such as design, rather than locating the ”best” solution, the user can
find it useful to learn about the range of possibilities and also to vary the objective
function (i.e. the criteria being used to search for the solution) as more is learned
about the nature of the problem. In such circumstances, a single solution is un-
desirable and indeed, there is rarely a ”best” solution to multi-objective problems
because of the trade offs between the various objectives. Genetic algorithms are
an excellent technique for helping designers to find areas within the problem space
that contain good solutions and additionally, the interaction between the designer
and the algorithm can be highly beneficial (Parmee, 2001).

The concept of a ”search space” is one that will occur throughout these notes. A
search space can be defined as the entire range of possible solutions to a problem.
A potential search space is shown below in Figure 1. As can be seen the space
has 3 dimensions. The two horizontal dimensions will typically represent the two
variables that are present in the problem (for example, for an engineering problem
these could be weight and cost) and the vertical dimension then represents the
”fitness” of the solution (i.e. how good the solution is). Note that the search space
in this example is continuous (this is not always the case) and has many peaks
of similar height. The problem therefore is, typically, to look around the search

www.manaraa.com

Genetic Algorithms for Design 3

Figure 1. An example of a search space

space and find the highest peak, although sometimes it may be desirable to find
all the peaks over a given threshold value. For a simple two variable problem of
the sort illustrated, this looks like an easy task, but most real search spaces are
multi-dimensional and many have discrete variables and so possess discontinuities
which are a challenge for any algorithm.

In this chapter, the basic techniques of the so called canonical genetic algo-
rithm will be covered. There are many variants on the canonical genetic algorithm
but these are mostly fairly simple to understand once one has grasped the basic
features of genetic algorithms. In terms of programming, commercial software
for genetic algorithms is available. For example, Matlab has an extension which
allows the easy development of a genetic algorithm. However, as will be shown
in the following sections, genetic algorithms are relatively simple and often it is
easier to write your own program because then this can be adapted, as required, to
your particular problem.

2 The Canonical Genetic Algorithm

The basic architecture of the canonical genetic algorithm is given in Figure 2. As
shown, the process starts with the creation of an initial population. Each member
of the population represents a potential solution to the problem being considered
although, as will be shown, many features of the problem are contained within
the fitness function rather than within the population. Searching for a solution(s)
using a population means that at each step, a genetic algorithm samples as many
points within the search space as there are members of the population (assuming
no two members are identical). This is one of the strengths of a genetic algorithm,
enabling it to sample widely throughout the search space and identify areas of high
performance (i.e. good solutions) on which the search can start to converge. The

www.manaraa.com

4 J. Miles

use of a population enables multiple high performance areas to be identified and
explored in further detail. This helps the genetic algorithm to avoid convergence
on local optima.

Figure 2. Schematic representation of a GA

Once the initial population is established, the basic process of the genetic al-
gorithm is to adapt and modify the members of the population based on feedback
relating to how good a solution is each member of the population, until one or more
good solutions are found. The judgement of how well each member of the popula-
tion performs is undertaken by the fitness function. The adaptation and modifica-
tion is then undertaken by the selection, crossover and mutation processes shown
in 2 and there is an iterative procedure, represented by the loop, which continues
until some convergence criterion is satisfied.

The process is analogous to Darwinian evolution in that there is a population
of solutions. These solutions are subject to an environment (the fitness function)
which tends to favour the reproduction of the solutions which are best suited to
that environment. Hence solutions which suit the defined environment are evolved
over a number of iterations (called generations).

www.manaraa.com

Genetic Algorithms for Design 5

2.1 Encoding the Problem

The typical genetic algorithm uses a binary string to represent each member of
the population. How this is achieved, varies with each problem. A simple practical
example is the problem examined by (Hooper, 1993) who devised a technique for
determining the best strategy for the disposal of the sludge from a sewage treatment
works. If the sludge was to be disposed of to agriculture, then there were a given
number of farms which could be used within an economical travelling distance of
the treatment works. The encoding used for this problem was to represent each
farm by one of the characters in a binary string (often called a chromosome), with
each character being called a gene. If the gene was 1, then the policy represented
by that individual was that the farm would be used to dispose of sludge. If it was
zero, then the farm would not be used. Assuming an example where there are ten
farms, a possible individual would then be as follows: [1001011101]

This represents the disposal of sludge on farms one, four, six, seven, eight
and ten and no disposal on the remainder. In the way that a genetic algorithm
works, it must be remembered that this would be just one possible solution within
a population of solutions.

An alternative to using binary encoding is to use so called real numbers. The
terminology is confusing because often the numbers are integers but as this is the
standard terminology within the evolutionary computation community, it will be
used throughout these notes.

In real number encoding, rather than using binary, actual numbers are used. For
example, Bradshaw (1996) was asked to derive an optimum electricity generation
strategy for the island of Great Britain. The constraints were that the strategy
had to meet the demand for power at all times while allowing sufficient time for
maintenance etc and taking account of the fact that it is better to generate electricity
as close to the demand as possible to reduce losses in transmission. The objective
of the optimisation was to reduce the damage done by the deposition of acidic
gases such as Sulphur Dioxide. In this case the encoding used was a real number
representation where each generating station was represented by a number between
zero and 100. If for example the number was 20, then twenty per cent of that
station’s maximum generating capacity would be used within a given year.

Assuming an example where there are eight generating stations (in the real ex-
ample there were over forty), then an example of an individual within a population
would be: [35,72,80,41,0,66,7,29]

With thirty five per cent of station one’s capacity being used, seventy two per
cent of station two’s, etc.

www.manaraa.com

6 J. Miles

2.2 The Choice of Encoding

There are various arguments for and against using binary and real number en-
coding. The argument in favour of binary encoding is based upon the schema
theory (Holland, 1975), Goldberg (1989).

The basis of the schema theory is that a schema is a similarity template that de-
fines similarities between individuals in a population (often called chromosomes),
at various points within the individuals. For example consider the following ex-
ample from Parmee (2001) which uses three individuals as follows:
0010111001010001
1011101000110100
1011111001110101

The schema or similarity template for these individuals is:
#01#1#100##10#0#
Where # represents ”don’t care” (in effect a mismatch).

The schema theory then looks at the following: ” The length of the binary
string, L, (in this case 16); ” The defining length which is the distance between the
first gene which is not represented by a # and the last gene which is not represented
by a # (in this case 15-2=13) and ” The order of the schema, which is the number
of characters containing a 1 or 0 (in this case 9).

Within a given member of a population, each gene can be represented by one
of three characters (#,0 or 1) and therefore the number of schemata present within
the member is 3L. If the population contains N members, then the total number of
schemata within the population is N3L.

The schema theory states that having a large number of schemata within a pop-
ulation increases the probability that high quality building blocks (i.e. areas within
a chromosome that represent good solutions to the problem being considered) will
be formed. Therefore, the theory says that long, binary chromosomes will tend
to give better solutions. This is linked to Holland’s (Holland, 1975) thoughts on
implicit parallelism within genetic algorithms.

The theory further states that binary strings have a greater information carry-
ing capacity than a real number representation and Holland presents arguments to
support this but they contain assumptions about the similarity of representations
that would be used when comparing real number and binary encoding that are not
necessarily valid.

There are also difficulties that occur when using binary encoding. The most
obvious is that there is usually a need to translate the binary representation (the
genotype) into a form where it can readily be understood by human beings (the
phenotype). Also using binary can lead to excessively long chromosomes which
can be difficult to handle within a computer. Finally there is the so called Hamming
cliff problem.

www.manaraa.com

Genetic Algorithms for Design 7

Taking a simple example where the answer to a problem is 7

[0111] = 7 BUT [1000] = 8 i.e. Completely different in binary format

This means that for a genetic algorithm to converge on a solution from 7 to 8,
the schema would be completely different (note the problem doesn’t occur between
8 and 9). This is what is called a Hamming Cliff - in other words all the zeros have
to change to ones and vice versa. The problems with this can be partially overcome
by using Gray Scale coding (Table 1) template for table placement

Table 1. Binary and Gray Scale Encoding

Decimal Binary Gray
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0010
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111

The arguments in favour of real number representation are less complex than
those given above, see Parmee (2001). One of the main advantages is that they
completely avoid Hamming cliffs and therefore cope much better with dealing
with convergence type problems. However, the main argument in favour of real
number representation is that it has been proven to work well on a wide variety of
problems.

2.3 Fitness Assessment - The Fitness Function

As stated above, the processes within a GA can be thought of as being similar
to those in Darwin’s theory of evolution where individuals which are better suited
to a given environment, on average, stand a better chance of survival and hence of
passing their genes on to the next generation. It is therefore necessary within a ge-
netic algorithm to have some sort of function that represents the environment. That
is, a function that measures how good a chromosome is in terms of it being a pos-
sible solution to the problem being considered. There is an immediate challenge
that arises here and that is that for many problems, very little is known about the
form of the search space. This can cause difficulties for traditional optimization

www.manaraa.com

8 J. Miles

methods but genetic algorithms are able to find good solutions without needing
detailed information regarding the problem being solved. Thus the performance
assessment function for a genetic algorithm is not referred to as an objective func-
tion, as would be the case for traditional optimization methods, but instead, as a
fitness function.

The fitness function is always problem specific so it is hard to give a general
description and instead an example will be given.

Take for example the problem shown in Figure 3 (Griffiths and Miles, 2003).
A load is to be applied uniformly to the top of a space and there is to be a support
at the base of the space. In between, some form of support is needed. If the third
dimension is included, this could be a problem to find the optimum beam cross
sectional area say for a simply supported beam.

Figure 3. The Design Domain

The encoding of the problem is as shown in Figure 4 where the space is split
up into squares (called voxels) and each voxel is represented as a gene in a binary
string (see the upper part of Figure 4). If material is present in a voxel, it is repre-
sented as a 1 and if the voxel is void it is represented as a 0. Thus in Figure 4, the
expected answer for this loading case is an I beam as shown.

However, the challenge for a genetic algorithm would be to generate an I beam
from an initial population in which the members are created by a random number
generator. One of the phenomena to which a beam is subjected is bending, so the
fitness function should contain a function which deals with this. Therefore a cross-
sectional shape is required that keeps normal stress levels, those caused by the
application of a bending moment, within the allowable stress limits while utilising

www.manaraa.com

Genetic Algorithms for Design 9

Figure 4. The Problem Encoding

the minimal amount of material. Minimising the required material arrives from a
desire to reduce self-weight. For this initial solution only bending moments are
considered with the load being applied uniformly and symmetrically to the upper
surface of the beam and the support being provided in the same manner at its lower
surface.

Such a load case produces normal stresses over the entire cross-section of the
beam which vary in intensity depending upon the shape of the cross section and
the location of material within it. Each solution is evaluated utilising two standard
stress analysis equations. The stress value for an individual active voxel can be
calculated using the bending stress (Gere and Timoshenko, 1997):

My i
I

(1)

where M is the applied bending moment (Nmm), y(i) is the distance of the ith
active voxel from the neutral axis in millimetres, and I (mm4) is the second moment
of area with respect to the horizontal neutral axis.

The second moment of area for the shape (with respect to the neutral axis) is
calculated as Gere and Timoshenko (1997) shown below:

I n
i 1 y i 2A (2)

where y(i) is distance of the ith voxel from the neutral axis of the shape in mil-
limetres, A (mm2)is the area of a voxel and n is the number of active voxels.

The neutral axis is assumed to be a horizontal line that passes through the
centroid of mass of the shape. The voxel representation system applied in this
research reduces the design space to a series of squares of uniform size and density.
Therefore it is acceptable to calculate the neutral axis as being the average position
of active voxels (average position of material).

www.manaraa.com

10 J. Miles

NeutralAxis
Ybase

Active
(3)

where Ybase is the distance of the material from the bottom of the design space in
millimetres and Active is the total number of active voxels.

It is evident from a simple analysis of these equations that the distance of an ac-
tive voxel from the neutral axis is most significant in determining the optimal shape
for the cross-section. Increasing the average value of y, will increase the second
moment of the shape and decrease the maximum value of voxel stress. Normal
stresses require material to migrate towards the vertical extremities of the design
space where the normal stress is greatest (forming two symmetrical flanges). A
valid solution to this simplified mathematical model would be any shape that does
not exceed the stress constraint, with the best solutions being those that satisfy
this constraint with the minimum amount of material. As only normal stresses are
currently being considered, there is no requirement for the genetic algorithm to
develop a web (primary shear stress carrier) or any other means of connecting the
two elements.

The fitness function has been designed to minimise the area of the beam (ac-
tive voxels) within the maximum allowed stress. Equation (4) describes the hard
constraint (i.e. must be satisfied) for this problem as follows:

SVoxelMax max (4)

The actual fitness function is given in the following equation. As can be seen, it
is designed to encourage the development of minimum mass, high stress solutions
which meet the imposed constraints. The scaling factors are present within the
function to allow for the different magnitude of the various terms and also to ensure
that each effect is given an appropriate level of importance within the function.

Fitness
1000

Active 1
SVoxelMax A P1 B P2 C P3

(5)

where Active is the number of active voxels and SVoxelMax is the maximum stress
value of any voxel.

P1 SVoxelMax max (6)

P2 SVoxelMax SVoxelMin (7)

P3 Numbero f ExposedVoxelSides (8)

A B C ScalingFactors A 100 B 30 C 10 (9)

max is the maximum stress value permitted in N/mm2within the material and
SVoxelMin is the minimum stress in any of the voxels.

www.manaraa.com

Genetic Algorithms for Design 11

The variable Active is used in a way which promotes solutions which have
the minimum amount of material as is P3. The other terms in the fitness function
encourage the efficient use of material.

The fitness of an individual is inversely proportional to the number of active
voxels (required material), and hence the search favours minimum self-weight.
To promote efficient use of the material, and minimise redundant stress carrying
capacity, (1/SvoxelMax) is applied so that solutions operate at the most efficient
stress values for the material utilised for the cross-section. P1 is applied to solu-
tions that violate the maximum stress constraint. P1 is the only hard constraint at
this point, and therefore violations are penalised heavily. P2 again encourages the
genetic algorithm to evolve solutions that operate at high stress levels to promote
efficiency. P3 is applied to minimise the development of small holes and isolated
voxels by penalising solutions relative to the number of exposed voxel sides. P3
also aids the development of solutions with minimal material as it requires voxels
to form tightly packed shapes for optimality. Each isolated voxel or small hole will
result in a P3 value of four (four exposed sides), thus encouraging the GA to group
together sections of material.

Scaling factors A, B and C are used to increase the weight of each variable, a
standard practice when applying evolutionary searches. Scaling has been applied
to prioritise the satisfaction of constraints over criteria. During initial generations
the scaling factors for constraint violations are set relatively low to allow the ge-
netic algorithm to explore the greatest range of potential solutions. During the final
generations, the scaling factors are increased to ensure the final solution meets all
constraints. Additionally, the scaling factors are applied to ensure that no single
variable dominates the search. This is necessary as the range of values for each
variable varies significantly. For example, during final generations, Active has an
average value of 750 per solution, where as P1 tends towards +/- 3. These penal-
ties can ensure all constraints are satisfied simultaneously, without any undue bias.
Scaling factors are also applied to the criteria elements of the fitness function to
ensure no one criterion dominates another.

So what sort of results does this fitness function give? The answer depends
on factors other than just the fitness function but Figure 5 shows typical solutions
evolved by the genetic algorithm after the 2000 generation.

Table 2 highlights the details of the best evolved solutions, at the end of a 2000
generation run (60000 evaluations, i.e. a population size of 30 chromosomes).
The tests were conducted with a design space of 300mm by 175mm and an ap-
plied bending moment of 200,000,000 Nm and a maximum allowable stress of
100 MPa. In addition to near optimal shapes being achieved (within 5 voxels of
the known optimum), the solutions are within the stress constraint limits. The ge-
netic algorithm has a success rate of approximately 90 per cent at locating near
optimal solutions.

www.manaraa.com

12 J. Miles

Figure 5. Results from 3 separate runs achieved with two dimensional genetic
operators, for bending only so no webs

Table 2. Results of tests conducted by Griffiths and Miles (2003)

Run Percentage Active Bending Stress Surface Area of Optimal Shape

- Voxels N/mm2 Exposed Voxel Sides Achieved

Initial Population - Average 155 Average 1925 Not Applicable

1 34.38 100.01 172 Yes
2 34.52 99.09 179 Yes
3 34.42 99.85 175 Yes

The above example shows how for a relatively simple problem, the fitness func-
tion can be fairly complex and also how it typically contains a mixture of objectives
and constraints. However, as can be seen from Figure 2, there are still many other
aspects of a genetic algorithm to be considered and without careful consideration
of these, the above results would not have been possible.

2.4 Selection

Having determined the fitness of each chromosome (i.e. potential solution to
the problem), the next stage is to select from the population those chromosomes
that will go forward to the mating pool. The mating pool is then used to breed the
chromosomes of the next generation so those individuals that are not selected will
not be able to pass on their genetic information to the next generation. There are
various methods of selection used with genetic algorithms but the basis of nearly
all of them is that the chances of the fitter individuals being selected for the mating
pool is stronger than that of the less fit.

There are two common methods that are used, the roulette wheel and tourna-
ment selection.

With the roulette wheel, a conceptual wheel is constructed, with each chromo-
some being given a slice of the wheel which is proportionate in size to its fitness.

www.manaraa.com

Genetic Algorithms for Design 13

So a fit individual is given a relatively large slice and a less fit individual a smaller
slice. The wheel is then ”spun” (in reality a random number generator is used) with
the result being an angle between 0 and 360. The selection operator determines
which chromosome’s slice covers the resulting angle and that individual is then
passed through to the mating pool. The wheel is spun sufficient times to provide
enough individuals for mating. Note that it is entirely possible for an individual to
be selected more than once.

The tournament selection method is simpler but generally more effective. In
its simplest form two individuals are selected from the population and the fitter of
the two is allowed to go forward to the mating pool. More complex forms select a
greater number of individuals but the process is still the same with the fittest going
forward.

With both these selection methods, it is entirely possible that the fittest indi-
vidual may not be selected for the mating pool. To overcome this problem, many
implementations of genetic algorithms use some form of what is known as elitism
where the fittest individual is automatically placed either in the mating pool or it
is passed directly to the next generation. Sometimes rather than just the fittest in-
dividual, the fittest X percent (say 10 percent) are chosen. Some people argue that
elitism is a bad thing and in such cases the usual procedure is to filter off the fittest
individual from each generation and keep them on one side in a separate location
so that if the individual is the fittest produced by the genetic algorithm during the
entire run, the information is not lost.

2.5 Crossover

Having chosen the chromosomes that are to be bred to form the next generation,
there are two main operators that typically form the breeding process. The first
of these is crossover and this is intended to mimic the processes that occur in
nature when two individuals come together to create a new individual. In genetic
algorithms, there are many forms of crossover, the simplest of which is single
point.

The process starts with the selection of two individuals from the mating pool.
For convenience, we will assume that these are both binary strings as follows:

[1000100100001] [0111100011001]
Using a random number generator, a point is chosen some where along the

length of the two chromosomes (say between the 5th and 6th bits) and the strings
are then cut at this point and the new chromosomes formed by taking the left hand
end of the first individual and combining it with the right hand end of the second
and vice versa. The result is as follows:

[1000100011001] [0111100100001]
Thus two new individuals are formed from the two parents. The process con-

www.manaraa.com

14 J. Miles

tains a significant degree of randomness about it. There is deliberately no attempt
to determine whether or not this is a good point at which to cut each individual be-
cause although in this generation the result may not be advantageous, it may result
in another generation or two in some further recombination which will give good
results. This is both a strength and a weakness of genetic algorithms. Their ability
to generate new and interesting results enables them to search widely throughout
the problem space and as the search starts to converge on certain areas of the search
space, the crossover occurs between high fitness individuals and so should result
in similarly fit individuals. However, towards the end of the process, when conver-
gence is almost complete, crossover can be very disruptive and at this stage it can
in some circumstances be advantageous to stop the genetic algorithm and instead
apply a more traditional, deterministic algorithm such as hill climbing.

There are many other forms of crossover. The basis of most of these is the use
of a mask as shown in Figure 6. This shows how a mask can be used for one point,

Figure 6. Crossover Mechanisms

two point and multi-point crossover. In effect the mask is another binary string
of the same length as the chromosome. In each position on the mask is either a
1 or a 0. If there is a 1, then that part of the chromosome remains unchanged. If
there is a 0, then the corresponding bit from the other parent is imported into the
chromosome. This gives the basis of how crossover works but as will be show
later in the section on topological reasoning, the choice of what mechanism to use
can have an impact on the ability of the algorithm to search effectively.

www.manaraa.com

Genetic Algorithms for Design 15

2.6 Mutation

As mentioned above, there are two commonly used operators with genetic al-
gorithms. Crossover is used to combine attributes from the two parents but in
nature there is also another mechanism at work and this is mutation. This in na-
ture allows species to change their characteristics over time and hence introduce
features that were not present in the original population. In genetic algorithms, the
working of mutation is very similar. Within the original population, there is only a
limited amount of genetic information and while crossover can combine and mix
this information in new ways to try and find desirable results, it is possible that
from time to time, the introduction of new material will be useful. This is the basic
thinking behind the mutation operator.

Mutation has to be used carefully but if this is done, then its impact can be
highly beneficial. If there is no mutation, then often the result is that the genetic
algorithm fails to find the best areas within the search space. However, if too much
mutation is allowed, then its impact can become disruptive and the process can
degenerate into a random search.

The typical method of applying mutation for a binary chromosome is to define
a so called mutation rate (typically about 0.01) and then generate a random number
between zero and one for each bit. If for a given bit, the number is less than the
mutation rate, then the bit is ”flipped”; that is a 1 is changed to a 0 or vice versa.
To show how this works an example is given below. For simplicity, a population
of just 3 chromosomes will be used, with each chromosome containing 4 bits. The
original population is:
[1010] [1110] [0010]
For each every bit of each chromosome a random number in the range zero to one
is generated as follows:
0.801,0.102,0.266,0.373
0.120,0.096,0.005,0.840
0.760,0.473,0.894,0.001
A mutation rate is then applied. This is typically a value that is fixed at the start
of the execution of the genetic algorithm and it has to be in the range of zero to
one (the same as the random numbers). Any bit whose random number is less than
or equal to the mutation rate is then bit flipped (i.e. a one is altered to zero and
vice versa). The mutation rate is typically set at a low value, otherwise the search
degenerates. For this example, the mutation rate is set at 0.008. As can be seen
only two numbers are less than 0.008 so only two bit flips occur to give:
[1010] [1100] [0011]
With real number chromosomes, mutation is slightly more complex but works on
similar principles. Typically two types of mutation operator are used with real
numbers, jump and creep. The former allows a given number in a chromosome
to change to any value within the allowed range and the latter just makes a small

www.manaraa.com

16 J. Miles

change. The way that this is then applied is to initially generate a random number
between one and zero for each member of the chromosome and if the number is
below the mutation rate, the member is selected for mutation. A further random
number between one and zero is then generated for each member. If the number
if below say 0.5, then the jump operator is used and if it is equal to or above 0.5,
then the creep operator is used.

Referring to the work of Bradshaw (1996) on power stations, for each mem-
ber of a chromosome, the possible range was between zero and 100 percent. In
practice the upper limit was set at 80 percent to allow for maintenance time, so the
jump operator allowed the number to be mutated to any value between 0 and 80.
The value to be applied was again determined by using a random number genera-
tor. The creep operator allowed the number to be change by 5 percent, again with
the value being determined randomly. For this particular problem, it was found to
be advantageous to apply the mutation operators equally at the start of the search
process (i.e. below 0.5 use the jump operator and equal to or above 0.5 use the
creep). However as the search progressed, the jump operator was found to be too
disruptive when applied at a high rate and so the rates were progressively changed
as the search progressed, so that in the later stages, the jump operator was rarely
applied.

2.7 Inversion

There is another operator that is sometimes used. In this the entire order of
the chromosome is swapped so that the right hand end becomes the left hand end
etc. So for example the chromosome [00001111] would become [1111000]. In
practice, inversion is rarely used because it is generally found to be too disruptive.

2.8 Convergence

With most problems that are tackled using genetic algorithms, information
about the final answer is completely lacking and therefore it is not possible to
say, with absolute certainty, when the search process is complete. In such cir-
cumstances, it is usual to let the search progress for a pre-determined number of
generations. However, some means of checking that the answer obtained is prob-
ably somewhere near the best possible is necessary. One way of checking for this
is to plot a graph of the change in the fitness that occurs as the search progresses.
Typically the values plotted are for the fittest individual within a population, al-
though it is also usual to plot the average fitness of the population as well. An
example plot of the fittest individual is given in Figure 7. In this particular case,
the correct answer to the problem is known and it is given a fitness of 100.

As can be seen from the Figure 7, the process gets close to the best answer
sometime around the 300th generation and then slowly converges so that by the

16

www.manaraa.com

Genetic Algorithms for Design 17

Figure 7. An example of change in fitness by generation

600th generation, it finds the best answer. This is for a case where the answer
is known, but for examples where the answer is not known, one would hope that
the change in fitness will follow a similar path although to some extent this is a
function of the problem space.

In cases where the problem space is reasonably continuous, then one would
expect the behaviour to be similar to that shown in Figure 7. However, even when
the process follows a reasonably smooth curve, it is not possible to guarantee that
the answer obtained is a good one and sometimes a sudden jump occurs in the
fitness curve. This for example could be when mutation takes the search to a
different area of higher performance.

Where the problem space contains significant discontinuities, then one would
expect a plot of fitness against generation to be much less smooth than that shown
in Figure 7. In such cases, it is much more difficult to judge with confidence when
the process seems to have converged.

There is an alternative approach to the above which has been developed by
Parmee (1998). His approach has been specially developed for design problems
where rather than finding ”the best” answer, one is more concerned with learn-
ing about the problem space and finding areas of high performance. The details
of Parmee’s method are too complex to be explained here but the overall con-
cept is that at each generation, chromosomes that pass a pre-determined level of
fitness are copied to a separate area where they are stored and at the end of the
search process, the contents of the area are presented to the user using a variety
of techniques including box plots and hyper planes. The plots can be presented
in a variety of formats including variable space and objective space plus the fit-
ness landscape. The approach is sophisticated and powerful and is recommended
to anyone who wishes to progress beyond the basic techniques that are being dis-

www.manaraa.com

18 J. Miles

cussed here. There is also a simpler and less powerful technique that is sometime
employed using Pareto fronts. Good examples of the application of this to struc-
tural engineering are to be found in the work of Khajehpour and Grierson (1999)
and Grierson and Khajehpour (2002).

2.9 Summary

The above covers the basic techniques for developing a so called canonical ge-
netic algorithm. There are many variations on the techniques described but for get-
ting started and learning about genetic algorithms, it is recommended that initial
work uses the above approaches and then develops further complexity as neces-
sary. The additional techniques are to be found in the literature. Also, there are
other very useful algorithms in addition to genetic algorithms and again once the
basics of evolutionary computation have been mastered, it can often be beneficial
to try other procedures.

3 Using Genetic Algorithms for Design

3.1 Introduction

This section will build on the description of a canonical genetic algorithm and
show how the techniques can be used to solve problems in design. The problem
that will be examined is the conceptual design of typical commercial buildings
such as multi-storey office blocks.

3.2 Building Design

In structural terms, a typical commercial building such as an office, a hospital
or a hotel, consists of columns and beams with the floors being either concrete
or composite slabs. The columns and beams are usually either steel or concrete,
although sometimes timber can also be used. The design of such a building is
undertaken by a team of designers which includes architects, structural engineering
and building services engineers. These people are brought together at the behest
of who ever is commissioning the building (typically called the client) to interpret
the client’s needs and produce a satisfactory design.

Design can be thought of as consisting of a number of stages. The very earliest
stages go by various names but typically are called client briefing or brief devel-
opment. Briefing starts with the client expressing what sort of building they want,
what they will use it for and what their overall parameters are in terms of cost
and the areas required. There then follows a series of conversations between the
client and one of more of the designers to develop these basic ideas into a more
comprehensive statement of what is required. At this stage, typically there are no
drawings other than a plan of the area in which the building is to be located (i.e. a

www.manaraa.com

Genetic Algorithms for Design 19

site plan).
The next stage of the process is then called conceptual design. This is where

most of the basic decisions regarding the form of the building are taken and typi-
cally by the end of this process, 80 per cent of the costs of the building are fixed
so it is vital that the right decisions are made at this stage. Generally during con-
ceptual design, the details of the design have yet to be fixed and so often decision
making is based on rough estimations and heuristics rather than absolute values.

Following conceptual design, the overall form of the building is fixed and there
then follow a series of stages in which detailed calculations are undertaken to check
out the performance of various components. These typically involve numerical
analysis techniques such as finite elements and finally the detailed drawings and
other contract documents are produced.

In this section, the discussion will focus on the conceptual design of a building
and how and why this should be supported by appropriate computational tech-
niques. However before this discussion starts, one very important ground rule has
to be established. In all complex decision making processes, it is vital that the
decisions are made by human beings, not computers. Computers are excellent
at processing and handling large amounts of information but they do not possess
knowledge about the world (other than that which has been specifically encoded
within software) and they lack common sense and judgement. So what has to be
aimed for in any decision making system, is a process where the human being and
the computer working together are able to produce a result which is superior to
that which can be produced by other techniques. To achieve this the process must
make the best use of the strengths of both the human being and the computer.

Typically when undertaking the conceptual design of a building, each design
will look at several options. For example, the structural designer will look at a
steel and concrete option and possibly they may look at one or two variations of
each of these. So typically each design may look at as many as 6 possible options.
Khajehpour and Grierson (2003) estimate that for the design of a typical building,
at the conceptual design stage, there are at least 400,000 possible choices from
which the design team can choose, so if each designer looks at 6 options, there are a
lot of possibilities that have been ignored. Of these 400,000, it is possible that some
will be poor choices that any experienced designer would automatically reject.
Also some may be very similar but nevertheless, the evidence is overwhelming
that unless they are extremely lucky, the design team will manage to do no more
than produce a design solution that satisfies the constraints, a so called satisficing
solution.

So what is needed, is something to enable the design team to find good solu-
tions from the range of possible options and it is here that genetic algorithms can
be of use. The following description is based on the work of Sisk (1999). The
system is called BGRID. The discussion will first look at the features of BGRID

www.manaraa.com

20 J. Miles

before then taking the reader through a typical user session.

3.3 Representation

The representation can be thought of as the choice of features of the problem
that are to be included in the chromosome and the encoding method (real num-
ber or binary). It is usually advantageous to keep the representation as simple as
possible. The BGRID chromosome contains 4 types of information:

The (x,y) coordinates of each column centre. As the number of columns
varies between solutions this means that BGRID does not have a fixed length
of chromosome.

The structure-services integration strategy. This describes how the services
(i.e. ventilation, plumbing, electricity, etc) are incorporated with the struc-
tural elements above the suspended ceiling. There are 3 options within
BGRID, these being, separate, partially integrated and fully integrated. The
option chosen affects the grid because for each option there are limited num-
ber of structural solutions, which in turn dictates the economical column
spacings. The choice of structural system influences the floor to floor height
and hence has a major impact on cost.

The environmental strategy. There are 3 options within the system, natural
ventilation, mechanical ventilation and air conditioning. The choice of these
is influenced by factors such as the building location and building depth and
they have a major impact on the height of a building and hence its cost.

The final component of the genotype is the clear floor to ceiling height. The
overall height of a building has significant cost implications and also dictates
whether or not it can be illuminated using natural daylight.

Real number coding is used. Each column is represented by two integers, one
for the X and one for the Y co-ordinate. The structural services and environmen-
tal strategies are represented by integers and the floor to ceiling height is a real
number. A rather short example of a genome is given in Table 3. The left hand
part, consisting of 6 numbers, contains the X column coordinates, the middle part,
consisting of the next 6 numbers, contains the Y column coordinates and the right
had end contains the other parts of the genotype.

Table 3. An example genome

0 25 50 75 90 100 0 20 40 65 80 90 0 1 2.9

www.manaraa.com

Genetic Algorithms for Design 21

3.4 Reproduction, Crossover, Mutation

In BGRID only the fittest member from a given generation is automatically
passed through to the next generation. Roulette wheel selection is used to deter-
mine which chromosomes are to be passed through to the mating pool.

The crossover mechanism has to take account of the structure of the genome
which is split into 3 distinct segments. To avoid creating a lot of illegal solutions
in crossover, the crossover operator is applied separately to each of the 3 parts of
the string. Single point crossover is used for each part, with the actual location
within the string being chosen randomly. If crossover produces column spacings
which do not fit the constraints imposed by the various grids, the nearest suitable
value is determined and the illegal value altered to conform. Where crossover
produces a chromosome where the values are out of order (i.e. not all the values
increase from left to right) the ordering is adjusted to suit. Also a further check is
run to determine the column spacings. Spacings which exceed 18m (the maximum
spacing allowed by the structural systems used in BGRID) are reduced by inserting
another column. Where columns are too close, one column is removed.

The mutation operator uses a mutation rate of 0.01. For the genes which con-
tain the column coordinates the range of mutation is restricted, as is explained in
the following example:

For the gene selected for mutation, the first process is to look at the values of
the 2 genes on either side of it (obviously for genes at the end of a segment one
can only look in one direction). So taking for example the gene shown in table 1.
If the 3rd gene with a value of 50 is assumed to be the one that is to be mutated,
it is necessary to ensure that the mutated value is consistent with the various grids
that have been defined for the building. So the mutation process starts by setting
up an array of possible values which are consistent with the grid spacings and fit in
between the 2 adjacent column spacings (in this case 25 and 75m). The new value
is then chosen randomly from the array of values. If for this example it is assumed
the modular grid spacing is 1.5m and the smallest preferred grid dimension is 3m,
then an array of grid spacings can be generated that starts at 28m and goes in 3m
increments to 72m. A value is then chosen at random from the array (say 55m)
and this becomes the new value. For the 3rd part of the genome, the values are
mutated in the normal way.

3.5 The Fitness Function

The development of BGRID was undertaken in close collaboration with prac-
tising designers. A fitness function that allows the user to search the design space
in different ways to examine the impact of various constraints is something, which
the designers identified as being a vital feature. Such features which allow the user
to operate the system in a flexible manner, allowing a full exploration of the design

www.manaraa.com

22 J. Miles

space while leaving the final decision to the designer, are a desirable feature of any
design software. For the BGRID fitness function, this flexibility is achieved by
allowing the user to alter the weights of the individual criteria within the function.
This feature also allows for the different types of users (e.g. architects, structural
engineers, etc.) to alter the bias of the search to suit their own discipline specific
viewpoint. In more detail, the fitness function works as described below.

The first part of the fitness function checks the hard constraints. If these are not
satisfied or acceptable, the implications are serious and the associated solutions
will be penalised. The checks conducted for these constraints include:

Check if overall height is less than the height restriction (if present);

Check if the design option is compatible with the chosen structural system,
particularly with respect to span lengths.

Check the uniformity of grid (this has a significant influence on buildability)

If the above are not satisfied a penalty function is applied to the individual’s
fitness. The value of penalty varies for each constraint. The fitness of the indi-
vidual design solution is multiplied by the inverse of the penalty function with the
penalties being as follows:

Height
PF1 1; IFheight heightrestriction (10)

PF1 0 : IFheight heightrestriction (11)

Design Option Suitability

PF2 PF2 0 25 (12)

Uniformity

PF3 PF3 0 25 (13)

The way the above are applied is as follows:

For the first penalty function, its value is 1 if the constraint is violated and
the overall height is greater than the height restriction and 0 if the overall
height is within the set limits.

For the second penalty function, the value is initially 0 and then is increased
by increments of 0.25 for each bay that doesn’t fall within the economic
span range of the structural design option.

The third penalty function also increases by increments of 0.25 for each
different bay dimension, (e.g. if there are three bay sizes of say 9, 12 and
15m within the grid, a penalty function of 0.5 will be applied. If all the bay
sizes are the same, then the penalty function is zero).

www.manaraa.com

Genetic Algorithms for Design 23

The three penalty functions are then added thus:

PF PF1 PF2 PF3 1 (14)

The second part of the fitness function deals with the soft constraints. Soft con-
straints are more difficult to quantify and the way this is dealt with within BGRID
is that each individual is assessed relative to all the other individuals generated up
to that point. That is, the worst and the best examples of each criterion are used to
determine how good the design solution is for this particular aspect of the design.
This is achieved as follows:

FIOBJ
FI FIBAD

FIGOOD FIBAD
(15)

where: FIBAD=the value of the worst individual generated up to that point, FI-
GOOD=the value of the best individual generated up to that point, FI=the value of
the evaluated parameter for the individual under consideration.

The objective is to maximise the value of FIOBJ. Each of the three components
below can be weighted by the user to reflect their importance for a particular search
strategy. This is the main mechanism by which the user influences the search. The
weight factors range from 0 to 4, with 0 being unimportant and 4 being highly
significant. The three components are:

Large clear span,

Minimising cost,

Minimising environmental damage.

The Large Clear Span component enables the user to search for solutions with
as large a span as is feasible, within the constraints of the design. Often clients
prefer buildings with as much column-free space as possible because of the greater
flexibility of such configurations.

When the user opts for the Minimum Cost being significant, the system doesn’t
actually optimise on real costs but features which are cost significant, these being:

Total weight per floor area (kg/m2)(Including steel, slab, deck, reinforce-
ment, services)

Overall building height (m)

Net/gross floor area ratio

The aim is to minimise the first two factors and maximise the third. It was
felt by the designers who collaborated in the development of BGRID that such an
approach, rather than using quantities and costs, was sufficiently accurate at the
conceptual design stage to guide the search towards low cost solutions.

A similar approach is used for the Minimising Environmental Damage compo-
nent with the following aspects being considered:

www.manaraa.com

24 J. Miles

Depth of space,

Clear floor-to-ceiling height

Location

The depth of space is determined by the dimensions of the floor plate (making
allowances for atria etc.) A higher than normal floor to ceiling depth is required
if natural daylight and natural ventilation are to be viable options but if a building
is situated in an urban environment the only ventilation strategy that is viable is
air-conditioning.

The above formulae are summed to give an overall fitness as follows:

FI
FIOBJ WF
PF w f

(16)

where: FIOBJ = sub-fitness of individual for each evaluating parameter (from
equation XX), WF = User determined weighting factor for the given evaluating
parameter, PF= penalty function for the hard constraints.

This determines the raw fitness of each individual in the population and is
used to determine the rank order. The Standard Fitness Method, see (Bradshaw
and Miles, 1997) is then used to assign pre-determined fitness values which ef-
fectively determines the degree of selective pressure assigned to each individual.
The pre-determined fitnesses are calculated using an algorithm based on the nor-
mal distribution and are then used to determine fixed slot sizes on a roulette wheel.
The individual with the largest rank order (i.e. raw fitness) is then given the largest
slot, the next in rank order the next largest etc.

3.6 BGRID: A Typical User Session

As with any design system, BGRID requires some initial information from the
user regarding the building which is to be constructed. The data input is divided
into four sections:

Geometrical information (plan dimensions and number of floors). The de-
sign is restricted to rectangular floor plans. The user is asked for X and Y
dimensions and the number of stories. During the search process, BGRID
will almost certainly produce some solutions which do not exactly conform
to the required plan dimensions but which are high fitness solutions. These
are not penalised by the fitness function as it is assumed the designer would
wish to be aware of them.

Site location. The user is given 3 options to choose from, urban, suburban
and rural. Also the user is asked to specify any overall height restrictions on
the building (usually imposed as a planning requirement) and the maximum

www.manaraa.com

Genetic Algorithms for Design 25

desirable floor to ceiling height. The above factors have a significant bearing
on the available options for lighting and heating and ventilation.

Location of architectural spaces, i.e. cores and atria (Figure 8). The user
is first presented with a screen which asks for the maximum occupancy (in
terms of number of people) of each storey and from this a minimum width
of fire escape can be calculated using the rules from BS 5588 Part 3. The
process then moves onto fixing the number and location of cores and atria (if
any). In the search process, BGRID may, in a given individual, make slight
adjustments to the sizes of cores and more often to atria, to better fit them to
the structural grid.

Dimensional constraints (see below)

Figure 8. Specification of Core and Atria Spaces

The dimensional constraints determine the grids that can be generated for the ge-
netic algorithm’s initial population. The user is asked to input the various grid
dimensions, which are to be used by the system. The user chooses from a menu
which contains all the available grid sizes and these are then used within BGRID
as follows.

The building dimensions are built up in multiples of the initial modular (i.e.
constructional) grid. Planning must take into account apparently insignificant ele-
ments, such as fluorescent tubes, as their cumulative impact can have a significant
effect on the layout of the building. Based on advice from the designers who col-

www.manaraa.com

26 J. Miles

laborated in the BGRID development, the user is offered a choice of initial modular
grid dimensions of 1200, 1500 and 1800 mm.

The next dimension is the critical grid, this being the absolute minimum dis-
tance that can separate two adjacent columns. This measurement is determined by
the intended use of the building. Again, based on advice from the industrial col-
laborators the available critical grid dimensions within the system are 2400, 3000
and 3600mm.

Following this, the user inputs the preferred minimum bay dimension (i.e.
the preferred distance between two adjacent columns). The users are also given
the opportunity to specify the maximum preferred distance between two adjacent
columns. These constraints are then used to limit the form of the grids generated
for the initial population, to ensure that they meet the designers’ requirements.
This results in a massive reduction in the search space, which is both an advantage
and a disadvantage. The benefit is that the problem is much less complicated to
solve but occasionally the search space is so constrained that the search is unable
to find solutions which are significantly better than the best of the initial (i.e. ran-
dom) population. The available minimum and maximum bay dimensions within
BGRID are given in Table 4. Again these have been provided by the industrial
collaborators.

Table 4. Building Bay Dimensions

Available Minimum Available Maximum Bay Dimensions
Bay Dimensions (mm) Bay Dimensions (mm)

4500 6000
4800 7200
5000 8000
5400 8400
6000 9000
7200 10000
8400 18000

The next part of the system allows access to all the background information,
such as the various structural configurations and section sizes used by the system
to generate the design solutions. Various default sizes are used within the system
but the user is free to change all these as is described below.

3.7 Creating the Initial Population

In the initial population for each individual the bay dimensions are chosen
randomly although obviously account has to be taken of the overall dimensions
input by the user and the ranges of available values are restricted based on the

www.manaraa.com

Genetic Algorithms for Design 27

dimensions of the grids which have been indicated by the user. The main challenge
is to generate column layouts which do not violate the constraints. The other
parameters are likewise generated randomly using values from the available pre-
determined ranges.

3.8 Component Sizing

BGRID sizes structural components using span/ depth ratios. This level of
detail was felt by the collaborators adequate for conceptual design, although sub-
sequent work in this are (see below) has used a far more accurate approach. The
span/depth ratios have been obtained from manufacturers’ catalogues. As with the
section sizes, the user is free to override any of the system’s decisions regarding
section sizes and span depth ratios and they can, if wished, insert their own. The
provision of facilities that enable the user to access and adjust the assumptions and
defaults within BGRID is a deliberate strategy. The collaborators asked for a sys-
tem which was both transparent and flexible. A typical example of the information
provided for a given structural flooring system is shown below in Figure 9.

Figure 9. Short Span Structural System Background Information

Currently BGRID contains information regarding 3 types of flooring system.
For the short spans there is the Slimflor system (Slimflor is a trademark of CORUS
plc.). In this system, the structural and services zones are fully separated. The
Slimflor beam is integrated within the steel deep deck, thus minimising the depth
of the structural zone. This is advantageous for a highly serviced building, al-

www.manaraa.com

28 J. Miles

lowing complete freedom for the horizontal distribution of services. Each of the
environmental strategies requires different depths of zones for items such as air
conditioning and ventilation and BGRID contains suitable defaults for each strat-
egy. The user is free to change any of these default depths if this is necessary. The
ties, which provide frame stability, can be selected from a list of angles provided
within BGRID. These dimensions are then used to calculate the overall height of
the building. With all the flooring systems, BGRID contains values of minimum
and maximum allowable spans.

For the medium span system, a composite steel beam and concrete slab system
is provided with the structural and environmental zones being partially integrated.
The default vertical dimensions for each ventilation strategy are also shown within
the system and as with the Slimflor, all default information can be changed if
necessary.

For the long span system, a steel stub girder and composite slab system is
included. The maximum span for this system is 18-20 metres. Three typical grids
exist and these are fully documented within BGRID. The grid descriptions include
details of the bottom chord, secondary beam and overall depth of the structure.
Again, the user is free to change all of these values. For the long span system, the
services are fully integrated within the structural zone. Further information on the
flooring systems is given in Sisk (1999).

3.9 Controlling the Search

The next part of the user interaction concerns the search process and how to
guide this by altering the fitness function weights. As described above, the fitness
function contains 3 components, the aim of these being:

Minimising cost

Minimising clear span

Maximising use of natural resources

BGRID allows the user to weight the importance of each component using
weight factors, which range from 0 (irrelevant) to 4 (extremely important). The
next step is to activate the genetic algorithm, which generates an initial population
of 50 solutions randomly within a confined search space. As explained above,
each solution contains information about the column grid, the structural system,
the environmental strategy and details of the vertical dimensions of the building.
This information makes up the genotype of the genetic algorithm. The genetic
algorithm runs for 50 generations with the whole process taking approximately 20
seconds. Fifty generations has been found to be more than sufficient for all cases
tested to date.

www.manaraa.com

Genetic Algorithms for Design 29

3.10 Search Results

The user is able to access information regarding maximum, average and mini-
mum fitnesses for each generation. Details of the ’best’ solution for each genera-
tion are provided in both textual (Figure 10) and graphical form, the latter showing
a floor plan with column spacings and positions of cores and atria (if present).

Figure 10. Text Based Design Summary

Also, the system provides the best design solution in both graphical and nu-
merical form for each of the short, medium and long span structural systems. The
planning grid, the structural grid, the vertical dimensions, overall height of build-
ing, weight of steel and total weight of floors are provided, as is the net/gross floor
area, the wall/ floor area ratio, the environmental strategy and the fitness. The user
is able to edit the design solution, for example moving the position of the cores
or adding an atrium. BGRID automatically checks any amendments to ensure that
none of them violate the constraints and re-evaluates the design working out a new
fitness value. This allows the user to see how beneficial their changes are.

3.11 Evaluation

BGRID has been developed in collaboration with practising designers and has
been evaluated throughout its development, by architects, structural engineers and
services engineers. Although in the earlier stages some teething problems were
identified, in general, and especially towards the end of the development process,
the response to BGRID has been very positive. Evaluators appreciated the flexible

www.manaraa.com

30 J. Miles

way in which BGRID could be used to investigate design problems. Also they
believed that the level of detail, both in terms of the design and the underlying
calculations, was correct for conceptual design although as stated above, further
work by the author has used more accurate approaches. One of the advantages of
using computationally assisted conceptual design, is that the level of accuracy can
be increased, thus reducing risk.

3.12 Further Developments

One feature of BGRID that is very limiting is that it can only cope with build-
ings with rectangular floor plans. This deficiency has been looked at by Shaw et al.
(2005b) who developed a genetic algorithm based method for designing buildings
with orthogonal boundaries. To achieve this polygon partitioning techniques are
used to decompose a floor plan into rectangular sections. This further development
of BGRID is called OBGRID In terms of data requirements, the main difference
between BGRID and OBGRID is that for the latter, the user has to fully define the
shape of the building. As the shape is more complex than just a single rectangle,
this is a somewhat more involved procedure for OBGRID. However as OBGRID
breaks all areas down into rectangles, the discussion will start by looking at how
OBGRID deals with a rectangle. The basic chromosome for a rectangle is identical
to that used for BGRID (see Figure 11 and Table 3) with the first part containing
the X column spacings, the second the Y column spacings and the third part the
structural system, services integration / environmental strategies and the floor to
ceiling height.

Figure 11. Example initialised, rectangular genome

www.manaraa.com

Genetic Algorithms for Design 31

3.13 Initialising a Rectangular Genome

Rectangular floor plans are initialised by considering the genome’s three sec-
tions (Figure 11):

Section 1: starting at the upper left hand corner of the floor plan (it is always
assumed that the top left hand corner has the local coordinates (0,0)) the
algorithm generates random column spacings in the x direction until the end
of the floor plan is reached.

Section 2: restarting at the upper left hand corner, the algorithm generates
random column spacings in the y direction until the end of the floor plan is
reached.

Section 3: The final section is initialised with randomly selected variables.

Unlike BGRID, no effort is made to constrain column positions to realistic spac-
ings. This is to make the GA search for solutions in both the feasible and infeasible
regions and hence improve the search. However, the fitness function does penalise
individuals that contain a range of column spacings. This is to encourage a degree
of uniformity in column spacings, which aids ’buildability’.

3.14 Evolutionary Operators

Genetic algorithms search the solution space by using biologically inspired
operators. However because the genome is divided into 3 distinct sections and
variable length genomes are used, the evolutionary operators have been amended
to reflect this:

Mutation: used to inject new solutions into the population improving the
search by (hopefully) prevent premature convergence (Goldberg, 1989). Hav-
ing selected an individual’s genome a new value is generated for a random
gene. If the mutation operator selects a gene from sections 1 or 2 (Figure
11), the gene is replaced with a randomly generated value between 0 and the
limits of the floor plan. Unlike BGRID, which restricts the new spacing to
a value between the two adjacent genes, OBGRID simply generates a ran-
dom spacing and, if required, sorts the genome so that the column spacings
increase from left to right. If a gene from section 3 (Figure 11) is chosen, it
is mutated as normal.

Recombination: used to exploit the information already in the population.
OBGRID employs a single point crossover operator. Single point crossover
is used because it is simple to implement even with variable length genomes
(as in OBGRID). However rather than applying the crossover operator on
the whole genome, it performs a separate crossover on each of the genome’s
three sections and happens with BGRID.

www.manaraa.com

32 J. Miles

3.15 Selection

OBGRID uses the tournament selection technique (Goldberg, 1989), which
has been found to give better performance than the roulette wheel method used in
BGRID.

3.16 Fitness Function

The fitness function assigns a single numerical value to an individual that re-
flects how ’good’ it is (although a multi-objective fitness function might be more
appropriate, however the goal of this work is to develop a representation). The
basic form of the fitness function is the same as that used in BGRID although OB-
Grid uses a quadratic penalty function, which assigns a greater penalty to a larger
transgression.

3.17 Illustrative Example: Rectangular Building

The following test case was designed to assess OBGrid’s performance.

Building dimensions: 60m x 18.2m,

Height restriction: none,

Population Size = 100,

Maximum Number of Generations=50,

Tournament Selection (size=2),

Elitism used,

Probability of reproduction = 0.1,

Probability of Mutation = 0.3,

One point crossover,

Crossover probability = 0.6,

Real encoding

Random initialisation with no seeding.

The fitness is based on the overall height (Lower is better but with constraints),
column spacing compatability and column spacing uniformity.

3.18 Results

The performance graph (Figure 12) shows the fitness of the best of generation
during the run, while (Figure 13) indicates the optimum layout. Note that unlike

www.manaraa.com

Genetic Algorithms for Design 33

Figure 12. Fitness progression for OBGRID

Figure 13. Rectangular Building Results for OBGRID

the example given above of a plot of convergence, in this case the improvement
in fitness occurs in distinct steps rather than being a smooth curve. This reflects
the nature of the search space. The best solution was found in generation 46 and
proposes using the long structural system with spacings of 20m (n.b. the maxi-
mum length restriction applied on BGRID is not imposed here) and mechanical
ventilation.

3.19 OBGRID and Orthogonal Buildings

Having shown how rectangular buildings are dealt with, the discussion will
now look at how OBGRID partitions an orthogonal floor plan into rectangles and

www.manaraa.com

34 J. Miles

then uses the rectangular methodology described above to design a layout. How-
ever an additional complication is the need to ensure column line continuation
throughout the building, which is achieved by using an ’adjacency graph’.

3.20 Polygon Partitioning

Computational geometry (Shamos, 1978) is the study of efficient algorithms
(usually computer based) and data structures for solving geometrical problems.
The partitioning of polygons is a major topic in this field and several algorithms
have been developed. However a ’sweep line’ approach was considered the most
appropriate for column layout design. Sweep lines techniques (Rourke, 1998)
move an imaginary line, the ’sweep line’, over a polygon from top to bottom or left
to right. During a sweep, the line is stopped at ’event points’ when the polygon
is partitioned. In this work, event points are any reflex vertex on the boundary
(Figure 14). Partitioning is completed in two stages:

Figure 14. An example sweep line

First stage: a line is swept from top to bottom. When the line encounters
an event point, it extends the relevant boundary edge horizontally across
the floor plan until it encounters another edge and splits it, at the point of
intersection. This partitions the building into several, ’thin’ rectangles (the
left hand side of Figure 15).

Second stage: a line is swept from left to right across the boundary, further
partitioning the rectangles created by the first stage: creating a grid pattern
(the right hand side of Figure 15). It should be noted that for each floor plan,
there is a unique partitioning. Therefore once an orthogonal floor plan has
been partitioned, no further partitioning is required (during the search).

An adjacency graph is used to ensure column line continuity throughout the build-
ing and to tell the genetic algorithm which sections of the building are connected
to one another.

www.manaraa.com

Genetic Algorithms for Design 35

Figure 15. The Two Stages of Partitioning

With the floor plan decomposed into a grid of rectangles, each partition must
now share at least one edge with another partition (with an upper limit of four).
These edges become vital during the evolutionary process because they will be
used to prevent the genetic algorithm from generating nonsensical solutions. To
monitor the status of neighbouring sections, the partitioned polygon has an ’adja-
cency graph’ associated with it (Figure 16). Associating a node with each parti-
tioned section and linking it to an adjacent section create the adjacency graph.

Figure 16. Adjacency Graph

Once a floor plan has been decomposed into a series of rectangular partitions
and an adjacency graph constructed, each partition has a genome associated with
it. Conceptually, each individual contains a set of genomes: with each genome rep-
resenting a rectangular partition linked by the adjacency graph. With the building
partitioned and adjacent partitions monitoring each other, a genome can be gener-
ated for each partition. The initialisation process starts by selecting the left most
upper partition (this is an arbitrary selection as the initialisation process could the-
oretically start at any partition, however to improve the algorithm’s ’transparency’
it always starts at the same location). As the overall dimensions of this partition
are known (and that it is a rectangle) the algorithm uses the initialisation procedure
described above. Having initialised the first partition, the algorithm selects an ad-
jacent partition and generates a new genome for it. However as the next partition

www.manaraa.com

36 J. Miles

must share a common edge, the algorithm firstly copies the column spacings for
this edge. For example, in Figure 17, left hand side, the x and y spacings from
section 1 are copied into the adjacent partitions. New spacings are then generated
for the remaining directions (Figure 17 right hand side). In complicated buildings
it is possible that both directions have been initialised, in this instance the partition
simply copies spacings from adjacent sections and does not generate any new spac-
ings. By constantly maintaining and updating the status of neighbouring sections,

Figure 17. First and Final Stages of Partitioning

via the adjacency graph, the algorithm ensures continuity throughout the building.
This continuity is vital to prevent the building from becoming a series of blocks
that when placed together do not form a coherent solution. For example, in Figure
18 when considered in isolation each section is valid however, when considered
as a whole, the building’s layout is flawed because the columns do not align. The

Figure 18. Invalid Partitioning

third section of the genome is assumed to be fixed throughout the building there-
fore every genome has an identical section 3.

www.manaraa.com

Genetic Algorithms for Design 37

3.21 Evolutionary operators

The same evolutionary operators described previously are applied to each rect-
angular partition. However, to ensure column continuity some additional steps are
applied:

Mutation: Having selected the individual to mutate, the mutation operator
randomly chooses, with uniform probability one partition of the building. It
then selects an individual gene and generates a new variable for it. If the mu-
tation operator selects a gene from sections 1 or 2, the gene is replaced with
a randomly generated value between 0 and the limits of the section (Figure
19). Unlike BGRID, that restricts the new spacing to a value between the
two adjacent genes, the new system simply generates a random spacing and,
if required, sorts the genome so that the column spacings increase from left
to right. Having altered its genome, the section is placed back into the build-
ing and all adjacent sections are updated (Figure 19). This final step means
the mutation operator is able to modify the building in only one location but
the change ripples throughout the building preventing column alignments
degenerating.

Figure 19. Mutation

Recombination(i.e. crossover): OBGRID employs a single point crossover
operator (Goldberg, 1989), which exchanges part of the genomes associated
with a section of the building. However once recombination has been ac-
complished, the altered sections are reinserted into the building and all other
adjacent partitions updated (as with the mutation operator described above)
(Figure 20).

3.22 Fitness Function

OBGrid applies the same fitness function as BGrid to each partition in the floor
plan and aggregates the results.

www.manaraa.com

38 J. Miles

Figure 20. Crossover

3.23 Illustrative Example: An Orthogonal Building

The following test case was designed to assess OBGrid’s performance. The
basic floor plan is given in Figure 21 and the partitioned floor plan is shown in
Figure 22. The parameters used are as for the rectangular building example.

Figure 21. Orthogonal Example: Floor Plan and Dimensions

www.manaraa.com

Genetic Algorithms for Design 39

Figure 22. Partitioning for Orthogonal Example

3.24 Results

The performance graph (Figure 23) shows the fitness of the best of generation
during the run, while Figure 24 indicates the optimum layout. The best solution

Figure 23. Performance Graph

www.manaraa.com

40 J. Miles

was found in generation 97 and proposes using the long structural system with an
average column spacing of 20m and mechanical ventilation.

Figure 24. Best Solution: Generation 97

4 Genetic Algorithms for Design

In the above examples, although the form of the building was a factor, it was not the
main purpose of the search which was more aimed at finding a structural layout,
once the floor plan had been fixed. However in many examples of Engineering
design, finding the best form for a given set of criteria, is an important factor. This
process goes by the general name of topological reasoning and in the following
section the discussion will look at some of the more salient methods that are used
in conjunction with genetic algorithms. In particular, the discussion will focus on
the methods of representation (i.e. what should be in the chromosome) used with
topological reasoning for structural design.

4.1 Parameter Based Representation

In the above examples for building design, the chromosome contained the pa-
rameters which defined the column locations. Where the topology of what is to

www.manaraa.com

Genetic Algorithms for Design 41

be design has already been fixed, the use of parameters is appropriate and useful
but for topological search, using parameters is very limiting and generally should
be avoided. The reason for this can be shown by the simple example given in
Figure 25. In a domain where the topology of the solution is unknown, then a

Figure 25. Parameter Based Representation

representation which allows the algorithm to describe a rectangle would, using pa-
rameters, require an X and Y dimension. However to also allow for a solution
where the answer is a circle would require a radius. One can of course go on
adding further possible shapes and for each one there would have to be a separate
parameter set and the algorithm would have to be able to recognise each one. It
becomes even worse if one considers a population of possible solutions with differ-
ent topologies and then considers how one would cope with typical operators such
as crossover. So for search problems where the topology is a part of the search,
the use of parameters is very restrictive and almost certainly will lead to a poor
solution. So other forms of representation are required.

4.2 Ground Structures

Another form of possible representation that has been used extensively in the
past is ground structures. With a ground structure, in theory, the complete range
of possible components and topologies is pre-defined and the idea of the search
is to determine which of the components can be removed to just leave ”the best”
structure. In practice, it is impossible to predict in advance all the possible com-
ponents and topologies and therefore, right from the very start, one can say that
ground structures will not allow a full search of all the possible solutions. Ground
structures are mostly used when a truss is the preferred form. A ground structure
then consists of a truss with nodes in fixed locations. Each node is initially con-
nected to all the other nodes by a structural member. The ”optimisation” process
consists of selectively removing structural members and searching for that com-

www.manaraa.com

42 J. Miles

bination which best satisfies the search criteria (Figure 26). The method has the
attraction of being simple but by fixing the number of nodes and their location, the
search is severely constrained and so the resulting structure is unlikely to be the
optimum for the given criteria.

Figure 26. An example of so called optimization using a ground structure. On the
left is the ground structure and on the right is the ”optimised” structure (Deb and
Gulati, 2001)

4.3 Graphs

Various forms of graph based representation have been used with genetic al-
gorithms. As with ground structures, their application has mostly been to trusses
although they can be used for other layout problems such as building floor plans.
Graphs allow one to model the connectivity between nodes while varying the lo-
cation of the nodes (Borkowski and Grabska, 1995). This gives them a distinct
advantage over the ground structure method and generally for problems which in-
volve linear and connected elements, a graph representation is very good. Yang
(2000) presents a simple method of using a tree based structure to describe trusses
(Figure 27 and Figure 28). In mathematical terms, this structure can be expressed
as:

I=((e1,m,i),(e2,m,k),e3,i,l),(e4,k,n2),e5,i,n1),e6,k,p),e7,i,n4),
(e8,p,j),(e9(l,n3),e10,p,n3),e11,j,n2),e12,j,n1))

Where the ”e” values are the ”edges” (i.e. the lines connecting the nodes in
the graph). In the above case, the edges are given zero values but they could eas-
ily contain properties such as the cross sectional area of the structural component,
etc. Such a structure as that given above can easily be turned into a genetic al-
gorithm chromosome. When applying operators such as crossover, there can be
problems with the resulting structures being unviable (for example mechanisms)
and so sometimes ”repair operators” are needed. Graphs are useful way of repre-
senting structures such as trusses which consist of many interconnecting members
but have only limited applicability to other forms of structures.

www.manaraa.com

Genetic Algorithms for Design 43

Figure 27. An Example Truss Structure

Figure 28. Graph Based Representation of Truss Structure

4.4 Voxels

The use of voxels has already been discussed above and an example is given
in Figure 29. For problems where there is a relatively high amount of solid mate-
rial in comparison to the amount of voids, then voxels can be a useful technique.
However, some of the problems are shown in Figure 29. This is an extension of
the pure bending problem discussed previously, where in this case some allowance
is made for shear forces, resulting in the formation of a web. The initial popula-
tion consists of randomly created solutions and from these one hopes to generate
suitable structural forms. The shape on the left shows a solution from an early
stage of the process. It can be seen that there are a number of isolated sections of
material. As the load is applied at the top and supported at the base, there is no
way that these can form any part of the main structure. However, at a later stage
when being combined with another chromosome using crossover, these isolated
voxels may link up with other voxels and form part of a useful structure.

www.manaraa.com

44 J. Miles

Figure 29. Potential Problems and Eventual Success using Voxels

So there are two competing forces. The first is to get rid of the isolated voxels
because they serve no immediate purpose and the second is that they may form a
useful building block at a later stage. The solution is that there has to be a com-
promise and the fitness function has to contain some functions which assist with
the removal of isolated voxels (such as measuring the total length of the exposed
voxel edges) which however are not so punitive as to immediately remove them
all.

Another problem is for intermediate solutions, such as that shown on the left
and in the centre, if these are structural forms, how does one analyse the perfor-
mance of such cross sections so that one can ascertain their fitness. Griffiths and
Miles (2003), used approximate methods. More recent approaches by the author
have used finite elements but this leads to long execution times.

Crossover and Mutation with Voxels

With a voxel representation, there is no difference between the genome and the
phenome. So, unlike most genetic algorithm problems where crossover and muta-
tion operate on a parameter set which have no direct connection to the phenome,
with voxels the operators directly change the form of the solution. This makes
the choice of operator a matter of vital importance. As discussed in the preced-
ing chapter, the usual crossover mechanism uses a mask and the components are
swapped directly.

For the problem shown in Figure 29 above, the problem is essentially two di-
mensional and so mask based crossover in two dimensional form works as shown
below in Figure 30. However, experience has shown that using this form of

www.manaraa.com

Genetic Algorithms for Design 45

Figure 30. Two dimensional crossover using a conventional mask (Zhang and
Miles, 2004)

.

crossover with voxels does not give a satisfactory solution. The problem can be
seen in Figure 30 where once the solutions start to converge, the material which is
swapped is almost identical and so the ability of the algorithm to search for new
solutions is severely constrained. Extensive experience based on the work of Grif-
fiths and Miles (2003) and Zhang and Miles (2004) has shown that what is needed
is a two-dimensional crossover with swap as shown below in Figure 31 where the
areas to be exchanged are chosen randomly. This may at first sight seem more dis-
ruptive than the normal crossover mechanism and therefore intuitively less likely
to give satisfactory answers but extensive testing has proved the superiority of the
swap operator.

Similarly with mutation, just changing one or two bits in a large search space
(e.g. 32 x 64 voxels = 2048 bits) has little impact. Griffiths and Miles found that
it was better to mutate on an area basis, say selecting a group of 4 voxels which
form a square and applying mutation to these.

4.5 Designing Geodesic Domes Using a Computational Geometry Based Rep-
resentation

Geodesic domes are structural space frames with regularly spaced members
which are typically arranged in a triangular format. The search for good so-
lutions to the design of such domes is an interesting problem because of their
3 dimensional nature. Pure geodesic domes have homogeneity in both member
length and nodal angular incidence and also have a geometry that is usually based
upon the sub division of a spherical surface into triangles, these being the sim-
plest non-deformable rigid shape. Geodesic domes are considered by some to be

www.manaraa.com

46 J. Miles

Figure 31. Two dimensional crossover with swap (Zhang and Miles, 2004)

the strongest, lightest and most efficient building system Motro (1994). In this
section, supporting the design of geodesic like domes by means of a genetic algo-
rithm is discussed. The domes that are designed not pure geodesics because the
constraints on member lengths and angles are not imposed although these could
be implemented by introducing extra constraints. The aim is just to produce viable
and efficient domical structures.

The representation used is based on a technique known as convex hulls which
are a subsection of computational geometry. Convex hulls are useful for this sort
of work because the dome can be represented as a collection of vertices which
are then joined by lines to form a series of triangles. From the point of view of
evolutionary computation, the method has a further attraction that the vertices can
be generated randomly and the algorithms associated with convex hull will then
determine which vertices lie on the exterior and thus form the convex hull itself.
Additionally, this ability to find the exterior vertices and ignore the others means
that should a vertex become displaced from the convex hull, possibly due to the
impact of operators such as crossover, it does not have to be deleted but can remain
within the population and may be of use in a succeeding generation.

In the following, the discussion concentrates on the implementation of the rep-
resentation. For further details about this work see Shaw et al. (2005a). The initial
sections contain the description of the computational geometry techniques which
have been used with the later sections describing how these are implemented in a
GA.

Convex Hulls

Computational Geometry is the study of algorithms and data structures for
solving geometric problems (Shamos, 1978). For the dome design problem, a

www.manaraa.com

Genetic Algorithms for Design 47

sub-section of computational geometry called convex hulls is used. The convex
hull of a finite set of points S, is considered to be the convex polyhedron with
the smallest volume that encloses S. Convex hulls can be used to form polyhedra
with a polyhedron being defined as a three dimensional object composed of a finite
number of flat faces, edges and vertices (Figure 32). It can also be described as
the 3D generalisation of a 2D polygon. Within this work, every polyhedron will
be convex with triangular faces and referred to as convex polyhedra. Polyhedral

Figure 32. CCW

Figure 33. Tetrahedron with CCW

faces have one important feature, they maintain their vertices so that when seen
from the exterior they appear in counter clockwise (CCW) (Figure 33). This en-
sures that the right hand rule (Figure 34) always yields a vector normal to the face,
pointing away from the polyhedron (Rourke, 1998).

Signed Volumes

To calculate the volume of a tetrahedral from the vertices, one has to use the
determinant form of the cross product (Rourke, 1998). The volume is described
as ’signed’ because it can be positive or negative with a negative volume being
defined as being generated when a face f forms a tetrahedron with a point p that

www.manaraa.com

48 J. Miles

Figure 34. Right Hand Rule

Figure 35. Negative volume generated by CCW face f and point p

can see its vertices in a CCW manner (Figure 35). A face f is considered to be
visible from some point p, iff a line drawn from p to some point x interior to f
does not intersect with the polyhedron, denoted as CH, at any point other than x.
Visibility can be also be formally defined by using sets (17). It should be noted
that (17) defines a face that is ’edge on’ to p to be invisible.

i f f px CH x (17)

The visibility of a face f from a point p can be determined by calculating the signed
volume of the tetrahedron defined by f and p. f is considered to be visible from p,
iff the signed volume is negative.

Incremental Algorithm

There are several algorithms which can be used to construct a convex hull
(Rourke, 1998) (de Berg, 2000). In this work, the incremental algorithm is used.
This constructs the convex hull CH, of a finite set of points S, by initially devel-
oping the convex hull CHi 1 of a simple sub-set Si of S. Having constructed the
convex hull for Si, the algorithm then adds one point at a time from S to Si updating

www.manaraa.com

Genetic Algorithms for Design 49

the convex hull as it progresses.
For example, consider a finite set of points

S p 1 p 2 p 3 p n (18)

The convex hull is initialised using a tetrahedron which is defined by four
points taken from S. The base of the tetrahedron is formed by 3 non-collinear
points and a fourth point at its apex, non-coplanar with the first three (if S does not
contain these points, then it is a 2D set and invalid for this problem).

The next remaining point pi in S, is then added to the existing convex hull
CHi 1 by considering the question: Are there any existing faces of CHi 1 visible
from pi?

No. If none of the existing faces of CHi 1 are visible from pi, then pi must
be internal to CHi 1. Therefore CHi 1 is still valid, as it encloses all points
in Si and remains unaltered. This is one of the strengths of this form of rep-
resentation because it effectively ignores vertices which are in an inappro-
priate position. This avoids the need for repair algorithms and other features
which are commonly implemented with topological search problems to deal
with the disruption that can be caused by crossover.

Yes. If some of the existing faces of CHi 1 are visible from pi, then pi

must be exterior to CHi 1. Therefore CHi 1 is invalid, because it no longer
encloses all points in Si and must be updated to include pi.

Updating the Convex Hull

The convex hull CHi 1 is updated in two stages: locating the horizon and in-
corporating the external point. An external point pi divides the existing hull CHi 1

into two regions: the visible and the invisible. These two regions are separated
by a curve called the ’horizon’ (de Berg, 2000) which is formed by the series of
edges that are adjacent to a visible and invisible face (Figure 36 a). Therefore once
the visibility status of every face from pi has been determined, the horizon can be
located. The external point is incorporated into the hull by appending a set of new
faces to it that have pi as a vertex. The new faces are triangular and constructed
from a horizon edge with an apex at pi (Figure 36 b). After building these new
faces, the original faces that were visible from pi are now underneath (the new
faces) and should be deleted along with any superfluous edges and vertices. At the
end of this process a new convex hull is complete (Figure 36 c).

Considering the definition of visibility that states that ’edge on’ faces are in-
visible, then any new faces will be appended to these existing ’edge on’ faces.
However, if ’edge on’ faces are considered to be visible then the algorithm will
attempt to remove them and replace them with a single new face. Unfortunately

www.manaraa.com

50 J. Miles

Figure 36. Updating an existing hull (adapted from Rourke (1998)).

if the new point to be inserted (into the convex hull) is coplanar with the existing
’edge on’ faces, the new face may not be triangular or result in the existing face
fracturing into a series of smaller faces and thus make the algorithm significantly
more computationally intensive (de Berg, 2000).

4.6 An Example

This work uses a GA to search for potential solutions. Real number coding is
used. The genome used in this work is subdivided into three sections (Figure 36):

Location of and magnitude of loads: The loads represent forces that must be
supported by the structure in addition to its self weight and are included in
the genome because it is assumed that a load can only act at a node (nodes
are solely constructed from the information within the genome). Therefore
although the user defined loads are constant for all individuals, they are in-
cluded in the genome to add transparency (the self weight is calculated once
the dome has been constructed and is not included in the genome).

Location of the dome supports: Dome supports represent locations at which
the dome is attached to the ground or supporting structure, for most domes
these are vertices in the plane z = 0. These can user specified or searched for
during the evolutionary process.

Location of dome vertices: Dome vertices represent nodes in the dome. For
non-trivial structures, this is the largest section of the genome. These are
initially generated by the incremental algorithm.

www.manaraa.com

Genetic Algorithms for Design 51

Figure 37. Example genome

Representation

Each section of the genome is represented in a different way :

User defined loads: As the user defined loads are constant, the evolutionary
operators do not need to modify them.

Dome supports: A pair genes (i.e. X and Y coordinates) represents every
dome support: (It is assumed they are all in the plane z=0).

Potential vertices: A triplet represents each node location (i.e. a separate
gene for the x,y and z coordinates).

When the incremental algorithm constructs the convex hull, the final structure
is dependent on the order in which the vertices are added. So two convex hulls
constructed from the same set of points but with different orderings, could pro-
duce structures that have identical vertices but different arrangements of faces and
edges and thus different structural responses. Therefore, genome ordering can be
significant.

Initialisation

At the start of the search process, the user only has to input the location of the
loads and define the size of the circular base. The user can also, if required, spec-
ify the number and location of the dome supports. If this isn’t done, the algorithm
will search for appropriate support positions during the run. Where not specified,
support locations are initially a series of randomly generated points on the circum-
ference of the circular base generated by selecting two numbers x1 and x2 from a
uniform distribution between -1 and 1 (ensuring that the sum of the square of both
numbers is not greater than or equal to 1). The corresponding Cartesian coordi-
nates related to x1 and x2 are given by equations (19) and (20) (Weisstein, accessed
2005).

x
x2

1 x2
2

x2
1 x2

2

(19)

y
2x2

1x2
2

x2
1 x2

2

(20)

www.manaraa.com

52 J. Miles

Vertices are generated from random points within a cube that is centered on the
dome’s base and with a side length of three times the diameter of the base. This
procedure is used to prevent the GA searching in completely unproductive regions,
while at the same time not biasing or inhibiting the search. To prevent additional
supports being generated, vertices may not lie on the domain boundaries. At the
outset each individual has a random number of vertices in its genome. However
because the dome is only constructed from vertices that lie on the convex hull, it
does not necessarily follow that all of these will be used to construct the dome.

4.7 Evolutionary Operators

Within the GA’s search process, the loads section of the genome is unaffected
(as these loads must be carried by every solution) while the crossover and mu-
tation operations are applied to the remaining sections individually. Selection is
achieved using a standard tournament approach. An ’n point’ crossover operator is
employed which is allowed to alter the length of the genome. However, crossover
must ensure that the second section always contains gene pairs and the third sec-
tion contains gene triplets. Two mutation operators are used in this system: point
and shuffle. Point mutation randomly selects a gene to alter and then uses the same
procedures as described during initialisation to generate a new point depending on
whether a support or vertex is selected. Shuffle mutation reorders a length of the
genome. This operator is included because genome ordering is important thus a
solution maybe improved by shuffling the genes.

4.8 Fitness Function

This work uses the minimisation of structural weight, enclosed volume and sur-
face area as its major objectives. These are combined with a structural parameter
that seeks to ensure constraints such as allowable buckling, tensile and compres-
sive stresses are not violated in the structure. The structural analysis module uses
the Trussworks package (Bucciarelli and Sthapit, accessed 2003) that allows users
and analyse 3D structures using the Direct Stiffness Method. This is computation-
ally much faster than the more rigorous analysis methods such as finite element
analysis and more than adequate for what is basically a conceptual design tool. To
search for the optimum number and location of supports, the GA initially gener-
ates a random number of supports and uses overall weight and stress constraints
to guide it. This is because for every additional support there must be at least two
additional structural members. These increase the overall weight: while the re-
moval of a support increases the loads carried by each of the remaining structural
members which may violate a structural constraint. Both of these scenarios reduce
the individual’s fitness and hence the algorithm is guided towards good solutions.

When calculating an individual’s fitness, the 3D vertices in the genome must be

www.manaraa.com

Genetic Algorithms for Design 53

converted into a domical structure (the phenotype). This process is accomplished
by constructing the genome’s convex hull, via the incremental algorithm. Once the
convex hull is constructed, its edges become the structural members of the dome.
Having built the dome, structural analysis is used to determine whether it performs
within the constraints specified above, if not the individual is penalized using a
quadratic penalty function (Richardson et al., 1989). A penalty function reduces an
individual’s fitness by an amount proportional to the constraint violation. It must
also consider invalid structures that cannot sustain the user defined loads (because,
due to the way the phenotype is constructed, there is no guarantee that they will
be included in the final dome as they may not form part of the convex hull). If
this situation occurs the individual is heavily penalised because the whole purpose
of the structure is to support the user defined loads. Finally the dome’s surface
area and volume ratio is determined along with its overall weight. At the end of
this process an individual’s genotype is converted into its phenotype allowing its
fitness to be calculated via equation (21).

Fitness weight
Sur f aceArea

Volume
StructuralOb jective (21)

A sensitivity analysis showed that the weightings of the components within eqn.5
are not significant within a reasonable range around the chosen values. It is recog-
nized that the fitness function could be more sophisticated but the main thrust of
this work is to establish the representation. The parameters used for the Genetic
Algorithm are:

Population size = 500, generations = 25, probability of reproduction 0.1, Prob-
ability of mutation (per genome)= 0.4, N point crossover, probability of crossover
0.5, Tournament selection (size =3) with Elitism.

Point, shuffle, addition and deletion mutation operators were all used with the
choice being random. The fitness function is based on the minimisation of the en-
closed volume and surface area subject to constraints relating to member buckling.

Currently this work assumes all structural members have the same cross sec-
tional area. The genome used does not consider individual members, as an explicit
parameter therefore there is no easy way of storing individual cross-sectional ar-
eas for exchange during the evolutionary process. Geodesic domes aim to have
homogeneity with regard to member sizes, so this is not such a major issue. An
example of the type of structure produced is given in Figure 38. As can be seen
this is not a pure geodesic dome because the member lengths and the angles vary
but as was stated at the start of the paper, our aim was only to produce viable and
efficient domical structures.

www.manaraa.com

54 J. Miles

Figure 38. Example of a Dome Designed by the System

4.9 Current Research Work

As can be seen from the above, there is a problem with topological reasoning,
in so far as there is no one technique that can be universally applied to all classes
of problems. Instead, there are a number of discrete techniques, each of which
can only be applied to a small range of topological search challenges. There are
also other topological reasoning/representation techniques which have not been
discussed above and likewise, these also are only applicable to certain classes of
problem.

This lack of a general technique poses problems for designers who wish to look
for good solutions for more complex problems. If the form of the ”best” solution is
unknown, then it is impossible at the start to choose a suitable representation. Also
if the form of the solution may involve several possible forms then the challenge
becomes even more complex. Take for example the task of designing a bridge.
Bridges can take several forms but to put it as simply as possible, the solution can
be a beam (which in turn can be a truss, a box girder or simple beam and slab
construction), a compression structure such as an arch or a tension structure such
as a suspension or cable stayed bridge. Getting the topology of such a structure
right is a major challenge and the savings and benefits can be substantial. However,
there is no computationally based form of topological reasoning that could even
begin to handle all these different structural forms.

There is also the question of complexity. With the current forms of representa-
tion that are used, it is only possible to represent relatively simple structural forms

www.manaraa.com

Genetic Algorithms for Design 55

within a genetic algorithm. With more complex shapes, the chromosomes become
so huge and unwieldy that they present handling difficulties within the algorithm.

At present there is no clear solution to these problems but work in recent years
has been looked at what are known as generative representations and also gener-
ative geometries. Space and time precludes a discussion of these techniques here
but they are active research areas which seem to offer a solution to some of the
challenges described above and with further research may become the solution
to all of them. For the reader who wishes to know more a good starting point for
generative representations is Hornby (2003) and for generative geometries, Leyton
(2001). Progress to date in implementing these approaches is described in Miles
et al. (2007).

Bibliography

Borkowski, A. and Grabska, E. (1995). Representing designs by composition
graphs. In Smith, I., editor, Knowledge Support Systems in Civil Engineering,
pages 27–36. IABSE, Zurich.

Bradshaw, J. (1996). Deriving strategies for reducing pollution damage using a
genetic algorithm. Ph.D. thesis, Cardiff School of Engineering, Cardiff Uni-
versity.

Bradshaw, J. and Miles, J. (1997). Using standard fitnesses with genetic algo-
rithms. Advances in Engineering Software.

Bucciarelli, L. and Sthapit, A. (accessed 2003). Trussworks 3d matrix truss anal-
ysis. web site 1, MIT.

de Berg, M. (2000). Computational geometry: algorithms and applications.
Springer-Verlag, 1st edition.

Deb, K. and Gulati, S. (2001). Design of truss structures for minimum weight
using genetic algorithms. Finite Element Analysis and Design.

Gere, J. and Timoshenko, S. (1997). Mechanics of materials. PWS publishing
Company, 4th edition.

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, 1st edition.

Grierson, D. and Khajehpour, S. (2002). Method for conceptual design applied to
office buildings. Journal of computing in civil engineering.

Griffiths, D. and Miles, J. (2003). Determining the optimal cross section of beams.
Advanced Engineering Informatics.

Holland, J. (1975). Adaptation in natural and artificial systems. University of
Michigan Press, 1st edition.

Hooper, J. (1993). A knowledge-based system for strategic sludge disposal plan-
ning. Ph.D. thesis, Cardiff School of Engineering, Cardiff University.

Hornby, G. (2003). Generative representations for evolutionary design automa-
tion. Ph.D. thesis, Brandeis University.

www.manaraa.com

56 J. Miles

Khajehpour, S. and Grierson, D. (1999). Filtering of pareto optimal trade-off sur-
faces for building conceptual design. In Topping, B., editor, Optimization and
control in civil and structural engineering, pages 63–70. Saxe-Coburg Press,
Edinburgh.

Khajehpour, S. and Grierson, D. (2003). Profitability versus safety of high-rise
office buildings. Journal of structural and multidisciplinary optimization.

Leyton, M. (2001). A generative theory of shape. Springer-Verlag, 1st edition.
Miles, J., Kwan, A., Wang, K. and Zhang, Y. (2007). Searching for good topolog-

ical solutions using evolutionary algorithms. In Topping, B., editor, Civil en-
gineering computations: Tools and Techniques, pages 149–172. Saxe-Coburg
Press, Edinburgh.

Motro, R. (1994). Review of the development of geodesic domes. In Makowski,
Z., editor, Analysis, design and construction of braced domes, pages 387–412.
Cambridge University Press, Cambridge.

Parmee, I. (1998). Evolutionary and adaptive strategies for efficient search across
whole system engineering design hierarchies. AIEDAM.

Parmee, I. (2001). Evolutionary and adaptive computing in engineering design.
Springer-Verlag, 1st edition.

Richardson, J., Palmer, M., Liepens, G. and Hillyard, M. (1989). Some guidelines
for genetic algorithms with penalty functions. In Anon, editor, Proc. 3rd Int.
Conf. on genetic algorithms, pages 191–197. Morgan Kaufman, USA.

Rourke, J. O. (1998). Computational geometry in C. Cambridge University Press,
2nd edition.

Shamos, M. (1978). Computational Geometry. Ph.D. thesis, Yale University.
Shaw, D., Miles, J. and Gray, W. (2005a). Conceptual design of geodesic domes.

In Topping, B., editor, Proc. 8th Int Conf on the Application of AI to Civil,
Structural and Environmental Engineering. Saxe-Coburg, Edinburgh UK.

Shaw, D., Miles, J. and Gray, W. (2005b). Conceptual design of orthogonal com-
mercial buildings. In Topping, B., editor, Proc. 8th Int Conf on the Application
of AI to Civil, Structural and Environmental Engineering. Saxe-Coburg, Edin-
burgh UK.

Sisk, G. (1999). The use of a GA-Based DSS for realistically constrained building
design. Ph.D. thesis, Cardiff University.

Weisstein, E. (accessed 2005). Circle point picking - mathworld - a wolfram web
resource. web site 1, mathworld.wolfram.com/CirclePointPicking.html.

Wolpert, D. and MacReady, W. (1997). No free lunch theorems for optimization.
IEEE Trans. on Evolutionary Computing.

Yang, Y. (2000). Genetic programming for structural optimization. Ph.D. thesis,
Nanyang Technological University.

Zhang, Y. and Miles, J. (2004). Representing the problem domain in stochastic
search algorithms. In Schnellenback-Held, M. and Hartmann, M., editors, Next
generation intelligent systems in engineering, pages 156–168. EG-ICE, Essen.

www.manaraa.com

CHAPTER 2

Evolutionary and Immune Computations in
Optimal Design and Inverse Problems*

Tadeusz Burczy�ski

Department for Strength of Materials and Computational Mechanics,
Division of Intelligent Computing Systems,

Silesian University of Technology, Gliwice, Poland
e-mail: tb@polsl.pl

Institute of Computer Modelling, Cracow University of Technology,

Division of Artificial Intelligence
Cracow University of Technology, Kraków, Poland

e-mail: tburczyn@pk.edu.pl

Abstract. This chapter is devoted to applications of biologically inspired
methods as evolutionary algorithms and artificial immune systems to
optimization and inverse problems, related to size, shape, topology and
material optimization and defect identification of structures.

1 Introduction

Evolutionary algorithms (Arabas, 2001), (Michalewicz, 1996) are methods
which search the space of solutions basing on the analogy to the biological
evolution of species. Like in biology, the term of an individual is used, and it
represents a single solution. Evolutionary algorithms operate on populations of
individuals which can be considered as a set of problem solutions. An individual
consists of chromosomes. Usually it is assumed that the individual has one
chromosome. Chromosomes consist of genes which play the role of design
variables in optimization problems. The adaptation of the individual is computed
using a fitness function. All genes of the chromosome decide about the fitness
function value. A flowchart of the evolutionary algorithm is presented in
Figure 1.

In the first step a initial population of individuals is created. Usually, the
values of the genes of particular individuals are randomly generated. In the next
step the individuals’ fitness function value is computed. Then, evolutionary
operators change genes of the parent population individuals, individuals are

* This work is a result of cooperation with W.Beluch, A.D�ugosz, W.Ku�, P.Orantek, A.Poteralski
and M.Szczepanik

www.manaraa.com

58 T. Burczyński

selected for the offspring population, which becomes a parent population and the
algorithm works iteratively till the end of the computation. The termination
condition of computations can be formulated in different ways, e.g. as the
maximum number of iterations.

In evolutionary algorithms the floating-point representation is applied,
which means that genes included in chromosomes are real numbers. Usually, the
variation of the gene value is limited.

Figure 1. A flowchart of an evolutionary algorithm

A single-chromosome individual (called a chromosome) chi, i=1,2,…,N,
where N is the population size, may be presented by means of a column or a row
matrix, whose elements are represented by genes gij, j=1,2,…,n, n-the number of
genes in a chromosome. The sample chromosome is presented in Figure 2.

Figure 2. The structure of an individual

www.manaraa.com

Evolutionary and Immune Computations 59

Evolutionary operators change gene value like the biological mechanisms of
a mutation and a crossing. Different kinds of operators are presented in
publications, and the basic ones are:

- an uniform mutation,
- a Gaussian mutation,
- a boundary mutation,
- a simple crossover,
- an arithmetical crossover.
The uniform mutation changes values of randomly chosen genes in a

randomly selected individual. The new values of the genes are drawn in such a
way that they could fulfil constrains imposed on the variation of the gene values.
The diagram of how an operator works is presented in Figure 3.

Figure 3. A diagram of an uniform mutation

The Gaussian mutation is an operator changing the values of an individual’s
genes randomly, similarly to the uniform mutation. New values of the genes are
created by means of random numbers with the Gaussian distribution. The
operator searches the individual’s surrounding.

The boundary mutation (Figure 4) operates similarly to the uniform
mutation, however, new values of the genes are equal to the left or right values
from the gene variation range (left or right constraint imposed on gene values).

Figure 4. A diagram of boundary mutation

www.manaraa.com

60 T. Burczyński

The simple crossover is an operator creating an offspring on the basis of two

parent individuals. A cutting position is drawn (Figure 5), and a new individual
consists of the genes coming partly form the first and partly form the second
individual.

Figure 5. A diagram of a simple crossover

The arithmetical crossover has no biological counterpart. A new individual

is formed similarly to a simple crossover, on the basis of two parent individuals,
however, the values of the individual’s genes are defined as the average value of
the parent individuals’ genes (Figure 6).

Figure 6. A diagram of an arithmetical crossover

Very important element of the evolutionary algorithm is the mechanism of
selection. The probability of the individual’s survival depends on the value of the
fitness function. A ranking selection is performed in a few steps. First, the
individuals are classified according to the value of the fitness function, then a

www.manaraa.com

Evolutionary and Immune Computations 61

rank value is attributed to each individual. It depends on the individual’s number
and the rank function. The best individuals obtain the highest rank value, the
worst obtain the lowest one. In the final step individuals for the offspring
generation are drawn, but the probability of drawing particular individuals is
closely related to their rank value.

2 Parallel and distributed evolutionary algorithms

2.1 Introduction

The sequential evolutionary algorithms are well known tools for global
optimization (Arabas, 2001), (Michalewicz, 1996). The number of fitness
function evaluations during optimization is equal to thousands or even hundred
of thousands. The fitness function evaluation for the real engineering problems
takes a lot of time (from seconds to hours). The long time computations can be
shorten when the parallel or distributed evolutionary is used. The fitness function
evaluation is done in parallel way when the parallel evolutionary algorithms are
used. The distributed evolutionary algorithms operate on many subpopulations.
The parallelization of the distributed evolutionary algorithm leads to two cases:
first when each subpopulation uses different processor, second when the
different processors can be used by each chromosome of the subpopulations.

2.2 The parallel evolutionary algorithm

The parallel evolutionary algorithms (Cantu, 1998) perform an evolutionary
process in the same manner as the sequential evolutionary algorithm. The
difference is in a fitness function evaluation. The parallel evolutionary algorithm
evaluates fitness function values in the parallel way. Theoretically, maximum
reduction of time needed to solve the optimization problem using parallel
evolutionary algorithms is equal to number of used processing units. The
maximum number of processing units which can be used is constrained by a
number of chromosomes in the population. The flowchart of the parallel
evolutionary algorithm is shown in Figure 7. The starting population of
chromosomes is created randomly. The evolutionary operators change
chromosomes and the fitness function value for each chromosome is computed.
The server/master transfers chromosomes to clients/workers. The workers
compute the fitness function and send it to server. The workers operate on
different processing units. The selection is performed after computing the fitness
function value for each chromosome. The selection decides which chromosomes
will be in the new population. The selection is done randomly, but the fitter
chromosomes have the bigger probability to be in the new population. The next
iteration is performed if the stop condition is not fulfilled.

www.manaraa.com

62 T. Burczyński

Figure 7. Parallel evolutionary algorithm

2.3 The distributed evolutionary algorithm

The distributed genetic algorithms (Aleander, 2000), (Tanese, 1989) and the
distributed evolutionary algorithms (DEA) work similarly to many evolutionary
algorithms operating on subpopulations. The evolutionary algorithms exchange
chromosomes during a migration phase between subpopulations. The flowchart
of DEA is presented in Figure 8.

When DEA is used the number of fitness function evaluations can be lower
in comparison with sequential and parallel evolutionary algorithms. DEA works
usually in the parallel manner. Each of the evolutionary algorithms in DEA work
on a different processing unit. The theoretical reduction of time could be bigger
then the number of processing units. The starting subpopulation of chromosomes
is created randomly. The evolutionary operators change chromosomes and the
fitness function value for each chromosome is computed.

The migration exchanges a part of chromosomes between subpopulations.
The selection decides which chromosomes will be in the new population. The
selection is done randomly, but the fitter chromosomes have bigger probability
to be in the new population. The selection is performed on chromosomes
changed by operators and immigrants. The next iteration is performed if the stop
condition is not fulfilled.

www.manaraa.com

Evolutionary and Immune Computations 63

Figure 8. The distributed evolutionary algorithm (one subpopulation)

2.4 The improved distributed evolutionary algorithm

To improve scalability of the distributed evolutionary algorithm, mechanisms
from the parallel evolutionary algorithm can be used. The simplest improvement
is computing fitness function values in a parallel way. The maximum number of
processing units which can be used is equal to a sum of chromosomes in
subpopulations instead of the number of subpopulations. The flowchart of the
modified distributed evolutionary algorithm is presented in Figure 9.

3 Geometry Modeling

The choice of the geometry modeling method and selection of design variables
have an important influence on the final solution of the optimization problem.
There is a lot of methods for geometry modeling. In the proposed approach the
Bezier curves are used to model geometry of structures. This type of the curve is
a superset of the more commonly known NURBS - Non-Uniform Rational B-
Spline (Piegl and Tiller, 1997). Using these curves in optimization allows to
reduce a number of design parameters. Manipulating by means of control points

www.manaraa.com

64 T. Burczyński

Figure 9. Improved distributed evolutionary algorithm

provides the flexibility to design a large variety of shapes. The main advantages
of NURBS curves are:

- one mathematical form for standard analytical shapes as well as for free
form shapes,

- flexibility to design a large variety of shapes,
- fast evaluation by numerically stable and accurate algorithms,
- invariance under transformations.

3.1 Bezier curves

An nth-degree Bezier curve is defined by:

� � � �,
0�

� �
n

i n i
i

C u B u P (1)

where t is a coordinate with changes range <0,1>, Pi are control points.
The basis functions Bi,n are given by:

� � � � � � 1
,

! 1
! !

�� �
�

ni
i n

nB u u u
i n i

 (2)

www.manaraa.com

Evolutionary and Immune Computations 65

The 4-th degree Bezier curve is described by following equation:

� � � � � � � � � �4 3 22 3 4
0 1 2 3 41 4 1 6 1 4 1� � � � � � � � �C u u P u u P u u P u u P u P (3)

Example of the cubic Bezier curves is shown in Figure 10a. By changing
positions of control points, one can obtain a large variety of shapes.

a) b)

Figure 10. Example modeling:
a) 4th-degree Bezier curve, b) closed NURBS curve

3.2 NURBS curves

A NURBS curve is defined as:

,
0

,
0

()
() ,

()

�

�

� � �
�

�

r

j n j j
j

r

k n k
k

N t w
t a t b

N t w

P
C (4)

where: Pj – control points, wj – weight of control points,
Nj,n – nth-degree B-spline basis functions defined on the knot vector:

�1 1
11

,..., , ,..., , ,...,� � �
��

	
� �� �

� �� �
��� n m n

nn

T a a t t b b (5)

www.manaraa.com

66 T. Burczyński

Changing position of control points and weight of control points, it is
possible to manipulate the curve precisely. A very important – from the practical
point of view – feature of NURBS curves is local approximation property. It
means that if the control point Pj is moved and/or the weight wj is changed, that
only a part of the curve on the interval t� [ti, ti+p+1] is modified. An example of a
NURBS curve is presented in Figure 10b.

In the case of 3-D structures the boundaries as the NURBS surfaces
(Figure 11) are modeled. Due to using the NURBS curves and surfaces, the
number of optimized parameters can be decreased.

Figure 11. The modeling the boundary using the NURBS surface

Shapes of voids in 2-D structure are modelled as the: (i) – circular, (ii) –

elliptical or (iii) – arbitrary, using the closed NURBS curve (Figure 12). In the
case of 3-D structure shapes of voids are modeled as: (i) – spherical, (ii) –
ellipsoidal or (iii) – arbitrary using the closed NURBS surface (Figure 13).
Coordinates of control points Pj and parameters of typical geometrical figures
play the role of genes in chromosomes.

Figure 12. The modeled forms of the voids (2-D)

www.manaraa.com

Evolutionary and Immune Computations 67

Figure 13. The modeled forms of the voids (3-D)

4 The evolutionary computations in optimization of
structures under dynamical loading

4.1 Introduction

The application of classic optimization algorithms in dynamical structures is
restricted by limitations referring to the continuity of the objective function, the
gradient or hessian of the objective function and the substantial probability of
getting a local optimum. Therefore new optimization methods, free from
limitations mentioned above, have been still looked for. Those methods are
known as genetic algorithms, evolutionary programming, evolutionary strategies
etc. Many of them turn out to be the alternative methods of optimization for
classic methods such as e.g. well known gradient methods. Particularly, the
genetic algorithms are often used in solving optimization problems. Those
algorithms are widely applied in many fields for solving search and optimization
problem.

This chapter concerns in the application of evolutionary algorithms in the
shape and topology optimization of structures being under dynamical loading.

4.2 Formulation of the optimization problem

Consider an elastic body which occupies the domain � bounded by boundary �
(Figure 14). Governing equations describing an elastodynamic problem have the
following form:

, ,(,) () (,) (,) (,), , [0,]i jj j ji i i fu t u t b t u t t t� � � �� � � � �� �x x x x x�� (6)

where (,)iu tx is a field of displacements, (,)ib tx is a field of body forces,

� and � are Lame constants and � is a mass density.

www.manaraa.com

68 T. Burczyński

Boundary conditions are prescribed in the following form:

(,) (,), , [0,]

(,) (,) () (,), , [0,]

o
i i u f

o
i ij j i p f

u t u t t t

p t t n p t t t

x x x

x x x x x
 (7)

where ip is the field of tractions, jn denotes the component of the outward
normal n and u p .
Initial conditions describe the field of displacements and velocities in the time
t=0:

(,0) (), (,0) (),i i i iu d u vx x x x x (8)

Figure 14. The elastic body

The problem of the shape and topology optimization of elastic structures
being under dynamical loads can be formulated as the minimization of the
volume of the structure

min J d (9)

subjected to the constraints imposed on equivalent stresses and displacements

(,) 0

(,) 0
eq o

o

t

u t u

x

x
 (10)

where: i iu u u x or x , t T=[0,tf], o and uo are admissible equivalent
stresses and displacement, respectively.

www.manaraa.com

Evolutionary and Immune Computations 69

There is also the alternatively formulation of shape and topology
optimization in which one minimizes a functional

(, ,) (,)
T T

J u d dt u p d dt (11)

with the constraints imposed on the volume of the structure

0J d Vo (12)

Integrands and are the arbitrary functions of their arguments. Using the
evolutionary algorithms, the minimization of (9) and (11) is performed with
respect to shape design variables. In order to evaluate the functional (11) and
constraints (10) the boundary element method was applied (Burczy ski, 1995).

4.3 Example of evolutionary shape optimization under dynamical loads

The example concerns minimization of the volume of a support (Figure 15). The
support is loaded by dynamical loading F(t)=F0sin(t), where F0=10kN (Figure
16). The optimization fitness function (9) was used. The constraints on the
values of the displacements were imposed.

The surface of the support was modeled using the NURBS surface. The
coordinates of the marked points (Figure 17) (control points of the NURBS
surface) were modified.

The following parameters of the evolutionary algorithms were applied:
pop_size: 50, max_life: 400. The optimal structure was shown in Figure 18.

Figure 15. The support

www.manaraa.com

70 T. Burczyński

Figure 16. The forced function

Figure 17. The location of the control points of the NURBS surface

Figure 18. The support after optimization

www.manaraa.com

Evolutionary and Immune Computations 71

5 Evolutionary Optimization and Identification in
Thermomechanical Problems

5.1 Introduction

5.2 Governing equations and objective functions

iikT x x

i jj j ji iu u bx x x x

i ib T

k

www.manaraa.com

72 T. Burczyński

o
i i u

o
i ij j i p

u t u t
p t t n p t

x x x
x x x x x

u p

o
T

o
i i q

f h

T T
q kT n q
q h T T

x x x
x x x
x x x x x

q h fT

T q h

et al

n
uJ
u

u u0 n

M N
k k l l

k l

J u u T T

ku lT uk
Tl

k l M N

www.manaraa.com

Evolutionary and Immune Computations 73

5.3 Numerical examples

The 2-D structures modelled in plain strain state are considered in identification
and shape optimization problems. Table 1 contains material parameters applied
for every numerical test.

Table 1. Material parameters

Shear modulus 80GPa
Poisson ratio 0.23
Coefficient of thermal exp. 12.5 · 10-6 1/ºC

Example 1. The identification of a circular void in the rectangular plate shown in
Figure 19 is considered. The fitness function given by (19) is applied.
Displacements are measured in the sensor points 1 and 2 whereas temperature is
measured in the sensor points 3 and 4. The boundary was divided into 48
elements.

Figure 19. A rectangular plate with circular void

The position and radius of the inner boundary were searched. Table 2

contains parameters of the boundary conditions.

Table 2. Parameters of the boundary conditions

T0
1 20�C

T0
2 500�C

q0 0
p0 100kN/m
�1 20W/m2K
�2 1000W/m2K
u0 0

www.manaraa.com

74 T. Burczyński

The speedup s of computation can be expressed as time need to solve
problem on 1 processing unit t1 computer divided by time on n-processing units
tn:

1

n

ts
t

� (20)

The number of processing units vary from 1 to 3. The two computers with

two SMP processing units are used. Table 3 contains parameters of distributed
evolutionary algorithm.

Table 3. Parameters of distributed evolutionary algorithm

Number of subpopulations 2
Number of chromosomes 10

Number of genes. 3
Constrain on gene 1 (x1 coordinate) 0,5 � 29,5
Constrain on gene 2 (x2 coordinate) 0,5 � 9,5

Constrain on gene 3 (radius) 0,5 � 3,0

The speedup of the improved distributed evolutionary algorithm is shown in

Figure 20. The linear speedup is theoretical maximal speedup of the parallel
evolutionary algorithm.

Figure 20. The speedup of improved distributed evolutionary algorithm

Table 4 contains the best result (after 8897 iterations) and relative errors for

coordinates and radius of internal void.

www.manaraa.com

Evolutionary and Immune Computations 75

Table 4. Results of the tests
x1 coordinate 25.28978
x2 coordinate 2.989090

radius 0.997610
value of the fitness function 0.000030

x1 coordinate error 1,16%
x2 coordinate error 0,36%

radius error 0,24%

Example 2. The structure with three inner boundaries, shown in the Figure 21, is
considered.

Figure 21. Structure with circular voids

In the identification problem the positions, radii and number of the voids
(form 1 to 5) were searched. The fitness function given by (19) was applied.
Figure 22 shows thermomechanical loading for the structure and Table 5
contains values of the boundary conditions.

Table 5. Parameters of the boundary conditions

T0
1 100�C

T0
2 20�C

T0
3 0�C

p0 100kN/m
�1 1000W/m2K
�2 20W/m2K
u0 0

www.manaraa.com

76 T. Burczyński

Figure 22. Boundary conditions

The external boundary was divided into 39 elements, whereas each internal

boundary into 8. The boundary sensor points of displacement and temperatures
are located at every node of external boundary except the part where u0 is
prescribed.

The chromosome contains 15 genes (3 for each void). The void was
generated for the value of radius greater than 0.5. Table 6 contains parameters of
distributed evolutionary algorithm. Figure 23 and Table 7 show results of
identification.

Table 6. Parameters of distributed evolutionary algorithm

Number of subpopulations 2
Number of chromosomes 10

Constrain on x1 coordinate 0,5 � 19,5
Constrain on x2 coordinate -8,2 � 8,2

Constrain on radius 0 � 2

Figure 23. Results of identification

www.manaraa.com

Evolutionary and Immune Computations 77

Table 7. Results of the identification
x1 coordinate 9.78084 2.19%
x2 coordinate 2.97841 0.72% Void 1

radius 0.92832 7.17%
x1 coordinate 10.3143 3.14%
x2 coordinate -3.24751 8.25% Void 2

radius 0.77259 22.74%
x1 coordinate 14.8896 0.74%
x2 coordinate 4.86734 2.65% Void 3

radius 0.93014 16.27%

Example 3. A square plate with a circular void is considered (Figure 24).

Figure 24. Square plate with circular void

For the sake of the symmetry only a quarter of the structure is taken into
consideration. The considered quarter of the structure contains an internal
boundary shown in the Figure 25. Prescribed values of the boundary conditions
are presented in Table 8.

Table 8. Parameters of the boundary conditions

T0
1 300�C

T0
2 20�C

q0 0
p0 100kN/m
�1 1000W/m2K
�2 20W/m2K
u0 0

www.manaraa.com

78 T. Burczyński

Figure 25. Boundary conditions

The model consists of 90 boundary elements. The objective of shape

function is minimization of the radial displacements given by the functional (18)
on the boundary where tractions p0 are prescribed. The optimization problem
consists in searching an optimal:

� shape of the internal boundary;
� width of the gap;
� distribution of the temperature T0

* on the internal boundary.
Shape of the internal boundary was modeled using Bezier curve which

consists of 7 control points, whereas width of the gap and temperature T0
* using

Bezier curve consist of 6 control points (Figure 26).

Figure 26. Modelling the shape, width of the gap and distribution
of the temperature on the boundary

www.manaraa.com

Evolutionary and Immune Computations 79

For the sake of the symmetry along line AB (Figure 25) the total number of
design parameters was equal to 13. The range of the variability of each control
point for the width of the gap is between 0.2 and 0.8, whereas for the
temperature is between 5�C and 80�C.

Table 9 and Figure 27 contain final results of evolutionary optimization.

Table 9. Results of the optimization
x1 coordinate of control point 1 1.1124
x2 coordinate of control point 1 13.3259
x1 coordinate of control point 2 2.4609
x2 coordinate of control point 2 7.0000
x1 coordinate of control point 3 1.6232
x2 coordinate of control point 3 5.0000

Shape of the internal
boundary

x1 = x2 coordinate of control point 4 -4.0853
control point 1 0.4313
control point 2 0.2752 Width of the gap
control point 3q 0.8000
control point 1 48.9698
control point 2 41.8679

Distribution of the
temperature on the
internal boundary control point 3 5.0000

Figure 27. The optimal shape, width and distribution of the temperature on
the gap

www.manaraa.com

80 T. Burczyński

6 Distributed Evolutionary Algorithm in Optimization of
Nonlinear Structures

6.1 Introduction

et al
et al

et al

6.2 Formulation of the evolutionary optimization

Structures made from nonlinear material with hardening

www.manaraa.com

Evolutionary and Immune Computations 81

0

aF d
�

� ��
� �� ��� �

 where p

p

 when

0 when

� � ! �	�� � � � " ���

eq eq
a

eq

 (21)

where eq� means the Huber – von Mises equivalent stress, p� is the yield stress
and 0� is the reference stress.

Shape optimization of structures with geometrical nonlinearities is
performed by minimizing structure displacements. The fitness function can be
formulated in the form:

2

0

u

�

� �
� �� �

� �
 F d

u
 (22)

where u is the displacement, u0 is the reference displacement.

Constrains in the form of admissible volume of the structure and boundary
values of design variables are imposed. Shape of the optimized structure can be
defined using NURBS (Non-Uniform Rational B-Spline) (Piegl and Tiller,
1997). There is a need of conversion curves into line segments and than the
structure is meshed using triangle finite elements (FEM) or using boundary
elements and cells (BEM). The Triangle (Shewchuk, 1996) code was used for
the body meshing. Coordinates of control points of the NURBS curve play the
role of genes in the chromosome.

Forging process optimization

The forging process in highly nonlinear. Three different fitness functions were
used during optimization. The first one is a measure between axisymmetrical
shape of the forged detail and the wanted one.

() d� #

y

F r y y (23)

The meaning of the ()r y# is show in Figure 28. The optimal fitness
function value is known and is equal to zero.

The MSC.Marc was used to solve the forging problem. The axisymmetrical
bodies were considered. The forging process was modeled with the use of two
bodies – rigid for a anvil and elastoplastic for a preform. The contact with
Columb friction were used. The isothermal conditions were considered. The
perform material was modeled as a viscoplastic material using equation:

� �0� $ $ $� � � �

m nA B (24)

www.manaraa.com

82 T. Burczyński

where - is a stress, - strain, - strain velocity, 0 - preliminary strain, A, B,
n, m - are material coefficients.

Figure 28. The obtained and wanted shape of the forged detail

The second and third fitness functions depend on plastic strains values. The
idea of using these functions is to equalize plastic strains distribution in the
body. The fitness function can be expressed as a double integral over the time
and over the area of the structure with the difference between plastic strains p

and mean plastic strains av as an integrand:

 d dt
T

p av
o

F (25)

The third fitness function is a double integral over the time and over the area
of the structure with plastic strains as an integrand:

0

 d dt
T

pF (26)

6.3 Numerical examples

A material with the material characteristic presented in Figure 29 is used in test
problems (Examples 4 - 6).

Example 4. A 2-D structural element is considered (Figure 30a). The material
data and parameters of the distributed evolutionary algorithm parameters are:
E1=20 GPa, E2=0.5 GPa, p=250 MPa, =0.3, thickness 5 mm, load value 110
N/mm, maximum body area 8000 mm2, number of chromosomes 500, number
of generations 250, number of populations 4.

www.manaraa.com

Evolutionary and Immune Computations 83

�

$

�max

�p

$p

E1

E2

Figure 29. Uniaxial stress-strain curve for material used in tests
E1 and E2 are Young’s moduli, $p is yield strain and �p is yield stress.

 a) b) c)

Figure 30. Optimized plate: a) geometry,
b) best after 1st generation, c) best after 196th generation

The external boundary and the hole boundary undergo shape optimization.

The external boundary was modeled using the NURBS curve with 3 control
points (one of them can be moved – 2 design variables) and the internal hole was
modeled using 4 control points NURBS curve (each can be moved – 8 design
variables). The fitness function was computed using FEM. The shape of the

www.manaraa.com

84 T. Burczyński

boundary after first and 196 generation is shown in Figure 30b,c. The plastic
areas are marked using the gray color.

In order to examine the DEA for various number of computers the
computing time was measured for 15000 fitness function evaluations. Computers
had AMD Duron 750 processors. The computing time versus the number of
computers is given in Table 10. The number of computed fitness functions as
function of the number of computers is shown in Figure 31. The starting
population was the same for each test. Problem was simpler that one shown
above – finite element mesh had lower number of elements.

Table 10. The computing time in function of computers number

number of computers computing time [s]
1 745
2 374
3 258
4 195

1

1,5

2

2,5

3

3,5

4

1 2 3 4
no of processors

sp
ee

du
p

linear speedup

Figure 31. Speedup of computations

Example 5. The problem of shape optimization of a half K-structure is
considered (Figure 32a). The material data and parameters of the DEA are:
E1=20 GPa, E2=0.5 GPa, �p=150 MPa, %=0.3, thickness 5 mm, load value 50
N/mm, maximum body area 30000 mm2, number of chromosomes 200, number
of generations 500, number of populations 4. The traction-free boundary is
modeled by 2 NURBS curves with 3 control points each. The fitness function
was evaluated by the BEM. The shape of the structure after first and 476
generation is shown in Figure 32b,c. The grey color was used to mark the plastic
areas. Computing time – 72 minutes.

www.manaraa.com

Evolutionary and Immune Computations 85

 a) b) c)

Figure 32. Half of K-structure: a) geometry, b) best after 1st generation,
c) best after 476th generation

Example 6. A shell structure containing 10 holes with constant radii is
considered. (Figure 33a). The optimization problem is to find optimal positions
of holes for criterion of minimum an integral over shells displacements. The
structure was computed considering large displacements The fitness function
was evaluated using MSC.Nastran. The shape of the shell after first and 500th
generation is shown in Figure 33b,c.

a) b) c)

Figure 33. Shell: a) geometry, b) best after 1st generation,
c) best after 500th generation

Example 7. The shape optimization problem of a perform was considered. The
open die forging is simulated. The flat anvil was used. The goal of the
optimization is to find shape of the perform which leads to cylindrical shape
after forging. The geometrical parameters are shown in the Figure 34. The
material parameters in the constitutive equation (24) for aluminum in 350 � C
were used: A=26.478, B=24.943, m=0.1629, n=3.4898. The friction coefficient
was equal to 0.5. The time step was 0.002s, the number of steps 200, Speer of
the anvil 75mm/s. The fitness function (23) was used during the optimization
process.

www.manaraa.com

86 T. Burczyński

Figure 34. The desired shape of the preform after forging

The geometry of the preform (Figure 35) was modeled using NURBS curve

with 4 control points. Coordinates of the control points were defined using 6
genes values (g1-g6).

Figure 35. The geometry of the preform

The constraints imposed on the genes values are shown in Table 11.

Table 11. The constraints on the genes values

gen minimum
[mm]

maksimum
[mm]

g1 50 250
g2 50 250
g3 50 300
g4 10 100
g5 50 300
g6 110 190

The number of chromosomes was 25, probability of the uniform mutation

25%, probability of the Gaussian mutation 62.5%, probability of the simple
crossover 6.25%, probability of the arithmetic crossover 6.25%.

www.manaraa.com

Evolutionary and Immune Computations 87

The best result was achieved after 638 generations (15362 fitness function
computations). The best found shape of the perform is presented in the
Figure 36a and the shape after forging in Figure 36b.

 a) b)

Figure 36. a) The best fund shape of the preform,
b) the shape of the preform after forging

Example 8. This example describes evolutionary optimization of two stage
axisymmetrical preform forging. Shape optimization of an anvil in the first stage
was performed. The first stage is the open die forging, the second one is closed
die forging. The criterions were expressed as (25) and (26). The results obtained
for both criterions are very close to each other. The shape of the anvil described
using NURBS function is shown in the Figure 37. The 8 parameters of the
NURBS curve were searched.

Figure 37. The shape of the anvil

The perform had cylindrical shape. The material parameters were the same

as in the Example 7. The friction coefficient was equal to 0.3. The model was
discretized using quadrilateral elements. The evolutionary algorithm with 10
chromosomes was used. The Gaussian mutation and the simple crossover
operators were applied.

The Figure 38a shows results obtained after the flat anvil forging in the first
stage and Figure 38b after closed die forging in the second stage. The best found
result is presented in Figure 39.

www.manaraa.com

88 T. Burczyński

a) b)

Figure 38. The shape of the preform after a) first stage, b) second stage of

forging
a) b)

Figure 39. The shape of the preform obtained using the best anvils after

a) first stage, b) second stage of forging

The speedup of computations, expressed by (20), in this case is presented in

Figure 40.

www.manaraa.com

Evolutionary and Immune Computations 89

1

1,5

2

2,5

3

1 2 3
no of processors

sp
ee

du
p

Figure 40. Speedup of computations

7 Topological Optimization of 2-D and 3D Structures Using
Evolutionary Computing

7.1 Introduction

Shape and topology optimization have been active research areas for some time.
Recently, several innovative approaches for topology optimization have been
developed. Perhaps one of the simplest optimization method is the method based
on removing inefficient material from a structure, which is named the
evolutionary structural optimization (Xie and Steven, 1997), however this
method is not based on application of the evolutionary algorithm but on different
rejection criteria for removing material which depending on the types of design
constraints.

One of the most famous of the structural optimization approaches is the
approach based on material homogenization method which was introduced by
Bendsøe and Kikuchi (1988) and has been applied to various optimization
problems. The homogenization design method assumes introduction of the
periodic microstructures of a particular shape into the finite elements of the
discretized domain. The size and orientation of the microstructures in the
elements determine the density and structural characteristics of the material in
the elements. An optimization process consisting in application of the
mathematical programming techniques leads to the minimization of the
structure’ compliance by changing of the orientation and size of the
microstructures. In effect of the optimization process composite structures
emerges.

Another approach to the structural optimization is based on generating
inside a domain a new void (so-called bubble) of the basis on special criteria and
next on performing simultaneous shape and topology optimization. This
approach was originated by Eschenauer and Schumacher (1995). Coupling this

www.manaraa.com

90 T. Burczyński

approach and boundary elements with genetic algorithms was considered by
Burczy�ski and Kokot (1998). From the mathematical point of view this
approach is based on replacing a one-connected domain by a multi-connected
domain.

Next interesting approach assumes discretization of the domain into binary
material/void elements introduced by Anagnostou et al (1992). This approach
was developed by Kirkpatrick et al (1983), who proposed finding of the optimal
material configuration within the design domain by use of simulated annealing.
While Jensen (1992) and Sandgren et al (1990), proposed application of the
genetic algorithm in order to solve similar optimization problems. This approach
has been developed by Chapman et al (1995).

One of the most interesting of the recent approaches to the structural
optimization problem is method named Multi-GA System introduced by Woon
et al (2003) which assumes application of two simultaneously and parallel
running genetic algorithms. The first external genetic algorithm is used to define
the optimum shape of the structure through operating on the external boundary
while the second internal is used to optimise the internal topology. This method
does not require application of the post-processing or additional algorithms to
generate smooth boundaries.

Presented in this chapter results are based on application of the evolutionary
algorithm and finite element method to the optimization problems of 2-D and
3D structures. They are an extension of previous works concerning such an
optimization problems (Burczy�ski et al, 2003, 2007), (Szczepanik 2003).
Recently, evolutionary methods have found various applications in mechanics,
especially in structural optimization (Burczy�ski and Osyczka, 2004). The main
feature of those methods is to simulate of biological processes based on heredity
principles (genetics) and the natural selection (the theory of evolution) to
creating of optimal individuals (solutions) presented by single chromosomes.
Evolutionary algorithms are usually applied in the situations when the
optimization problems are too complicated for the traditional gradient
optimization methods.

The task considered in the present work is related to such a problem. This
task consists in creating an effective optimization algorithm for 2-D and 3D
structures in respect of topology, shape and material or thickness arrangement.
The main advantage of the evolutionary algorithm is the fact that this approach
does not need any information about the gradient of the fitness function and
gives a strong probability of finding the global optimum. The fitness function is
calculated for each chromosome in each generation by solving the boundary-
value problem by means of the finite element method (FEM). In order to solve
the optimization problem the fitness function, design variables and constraints
should be formulated.

www.manaraa.com

Evolutionary and Immune Computations 91

7.2 Formulation of the problem

Consider a structure (plate in plane stress/strain, bending plate or shell) which,
at the beginning of an evolutionary process, occupies a domain

� �0 , 2 3� �din E d or , bounded by a boundary 0� . The domain 0� is filled
by a homogeneous and isotropic material of a Young’s modulus E0 and a
Poisson’s ratio % . The thickness of the structure g0 is also constant at the
beginning of the evolutionary process. The 2-D structures are considered in the
framework of theory of linear elasticity. During the evolutionary process the
domain �t , its boundary �t and the field of Young’s modulus

� � ,� ��t tE Ex x or the thickness � � � tg gx can change for each generation t
(for t=0, E0=const, g0=const). The evolutionary process proceeds in an
environment in which the structure fitness is describing by two possibilities:

� the objective is to minimize of the stress functional

� �& �
�

� � J d (27)

where & is an arbitrary function of stress tensor � , with a constraint
imposed on the volume of the structure max' � �V V ,

� the objective is to minimize the volume of the structure

�

� � J d (28)

with constraints imposed on equivalent stresses � eq of the structure

� � max ,� �� ��eq x x (29)

In order to solve the formulated problem FE models of the structures are

considered (Zienkiewicz, 2000). The structure is divided into finite elements
, 1, 2,...,� �e e R , and node displacements are calculated by solving a system of

linear algebraic equation

KU=F (30)

where U is a column matrix of unknown displacements, F is a known column
matrix of acting forces and K is a known global stiffness matrix of the structure
whose elements are given as follows:

www.manaraa.com

92 T. Burczyński

e

e T

V

K = B DBdV (31)

where D and B are the known elasticity and geometrical matrices, respectively,
Ve represents the volume of the finite element.

The distribution of Young’s modulus � � , ��t tE x x or thickness

� � , ��t tg x x in the structure is describing by a surface

� � � �2 2, or , , (,)� � �E gW H W H x yx x x x x (32)

for plate in plane stress/strain, bending plate or a hypersurface

� � � �3 3, or , , (, ,)� � �E gW H W H x y zx x x x x (33)

for shell (Figure 41). The surfaces (hypersurfaces) � � � � i E gW Wx x are

stretched under , (2, 3)(�d dH E d and the domain �t is included in dH ,

i.e. � ��) d
t H . The shapes of the surfaces (hypersurfaces) � � � � i E gW Wx x is

controlled by genes hi, i=1,…,N, which create a chromosome

1 2[, ,..., ,...,]� i Nch h h h h , min max� �ih h h (34)

where

minh - the minimum value of the gene,
maxh - the maximum value of the gene.

Genes are values of the function � � , ,� � �W E gx in interpolation nodes xi,

i.e. � ��i ih W x , i=1,2,…,N.
The assignation of Young’s moduli or thickness to each finite element

, 1, 2,...,� �e e R is adequately performed by the mapping:

� � , , 1, 2,...,� � � �e E eE W e Re ex x (35)

� � , , 1, 2,...,� �� �e g eg W e Re ex x (36)

It means that each finite element can have different material. When the

value of Young’s modulus or thickness for the e-th finite element is included in:
- the interval min0 � "eE E (or min0 � "eg g), the finite element is eliminated

and the void is created,

www.manaraa.com

Evolutionary and Immune Computations 93

- the interval min max� "eE E E (or min max� "eg g g), the finite element remains
having the value of the Young’s modulus from this material (Figure 42).

Figure 41. Illustration of the idea of genetic generation for 2-D structure

Figure 42. Requirements for elimination and existence of the finite
elements

www.manaraa.com

94 T. Burczyński

7.3 Interpolation procedures

In the considered work three different interpolation procedures have been
applied: (i) interpolation procedure of the function (,)f x y used for solving tasks
of the optimization of plates in plane stress/strain and bending plates, (ii)
interpolation procedure of the function (, ,)f x y z used in the case of the
optimization of shells and (iii) two interpolations procedures for 3-D problems.

For optimization problems of the plates in plane stress/strain and bending
plates the interpolation surface which is described by the following expression
has been applied

1

2

16

(,) ()�

* +
, -
, -� . , -
, -
, -/ 0

�

h
h

W x y

h

-1 -1� X Y (37)

where

2 3 2 3 2 3 2 3 2 2

2 2 2 3 3 3 3 2 3 3

[1, , ,] [1, , ,] [1, , , , , , , , , ,
 , , , , ,]

� . �x x x y y y y y y x xy xy xy x x y
x y x y x x y x y x y

� (38)

and X and Y matrices are given as follows

2 3 1
1 0 0 0 0
1 1 1 1 1

1 2 4 8 2
1 3 9 27 3

* +
, -
, -� �
, -
, -
/ 0

x x x

X Y
 (39)

In the case of shells optimization problems, the application of the

interpolation procedure of the function (, ,)f x y z , creates some difficulties,
which are connected with the curved shape of the shell. There are some
difficulties with the adaptation of the procedure to the number of the control
points and to the distribution of the control points in the three-dimensional space.
In connection with the mentioned difficulties, for the problems of the shells
optimization, the interpolation procedure based on the finite element mesh, is
introduced (Figure 43). That procedure (Table 12) is grounded on the analysis of
the neighbourhoods of the individual nodes.

www.manaraa.com

Evolutionary and Immune Computations 95

Table 12. Interpolation procedure

Read nodes i=1,2,...,G and elements e=1,2,...,E
For i=1,2,...,G read initial vector 0 0 0

1 2, ,..., wp p p
of the optimization parameters

For k=0,1,2,...,K * k – iteration step *
{

For i=1,2,...,G * for all the nodes *
{

1k k
i ip p� �

For j=1,2,...,M * for all neighbour-nodes of the node i *
compute max(pj)
compute min(pj)
compute pi=1/2[max(pj)+ min(pj)]
}
For c=1,2,...,C * for all control points *
{
 pc=hi * rewriting of the changed parameter values in the
 control points to the initial values
 (values of the genes) *
}

}

Figure 43. Nodes Sj being in neighbourhood of the node Pi

In the case of 3-D structures the distribution of Young’s modulus
� � � �, , , , , ��tE x y z x y z in the structure is described by a hyper surface

� � � � 3, , , , , �W x y z x y z H . The hyper surface � �, ,W x y z is stretched under
3 3(H E and the domain �t is included in 3H , i.e. � �3�)t H .

The shape of the hyper surface � �, ,W x y z is controlled by genes dj,
j=1,2,…,N, which create a chromosome

www.manaraa.com

96 T. Burczyński

1 2, ,..., ,...,� j Nch d d d d (40)

Gene values are described by the function � �, ,W x y z in interpolation nodes

(control points) � �, ,
j

x y z , i.e. � �, ,* +� / 0j j
d W x y z , j=1,2,…,N.

The following constraints are imposed on the genes

min max� �d d dj j j (41)

where min

jd - the minimum value of the gene and max
jd - the maximum value

of the gene.
In the first interpolation – the multinomial interpolation of the hyper surface

is expressed as follows

� �
1

1 1 1

27

(, ,) � � �
* +
, -� 1 . . �, -
, -/ 0

d
W x y z

d
X Y Z (42)

where

1 . .2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

=[1,x,x] [1,y,y] [1,z,z]=[1,z,z ,y,yz,yz ,y ,

y z,y z ,x,xz,xz ,xy,xyz,xyz ,xy ,xy z,xy z ,

x ,x z,x z ,x y,x yz,x yz ,x y ,x y z,x y z]

 (43)

and X, Y and Z are matrices described as follows

1 0 0
1 1 1
1 2 4

* +
, -� � � , -
, -/ 0

X Y Z (44)

www.manaraa.com

Evolutionary and Immune Computations 97

Figure 44.

H

f k Kk +1 kW W

i Ep p p p i R0W

ip i R

k k k
Wp p p k Kk +1W

www.manaraa.com

98 T. Burczyński

Table 13. Interpolation procedure in optimization of 3-D structures

are calculated by equation

1 1 [max() min()], 1, 2,...,
2

� � � �k k k
i j jp p p j M (49)

where:
T[i] – vector determining position of control points (if T(i) is equal one –i-th

element contains control point, if T(i) is equal zero – i-th element does not
contain control point).

M � number of neighbours , 1,2,...,jS j M� for i-th element , 1,2,...,iP i R�
(Figure 45),

1k
ip � � value of the parameter of the optimization for i-th element, in step k+1,
k
jp � value of the parameter of the optimization for j-th element which is

neighbour for element i-th, in step k-th,
max()k

jp � maximal value of the parameter of the optimization for elements
which are neighbours for element i-th, in step k-th,

min()k
jp - minimal value of the parameter of the optimization for elements
which are neighbours for element i-th, in step k-th.

Load nodes i=1,2,...,W and elements e=1,2,...,E
For e=1,2,...,E load the initial vector of parameters optimization
For k=0,1,2,...,K „k – step of iteration”
{
For i=1,2,...,E „for all elements”
{
If T[i]=0
{
For j=1,2,...,M „for all neighbouring elements for i – element”
Calculate max(pj)
Calculate min(pj)

Calculate pi
k+1=1/2[max(pj

k)+ min(pj
k)]

}
If T[i]=1 pi

k+1= pi
k

}
}

www.manaraa.com

Evolutionary and Immune Computations 99

Figure 45. Elements Sj neighbour with element Pi

For the first interpolation a part of working space may not be used. The

second interpolation has not this disadvantage. Moreover for the first
interpolation the number of control points is constant, for the second
interpolation, the optional number of control points can be loaded (Figure 46).

Figure 46. Working space for two different interpolations

Minimization of the fitness functions with respect to the chromosome (40) is

performed by means of an evolutionary algorithm with the floating point
representation.

After the FEM discretization the starting population of chromosomes is
randomly generated. At the next step the main loop of the optimization algorithm
is performed.

Operations included in the main loop lead to the calculation of the fitness
function. It requires that the boundary-value problem should be solved by the
FEM. After the calculation of the fitness function for all chromosomes in the
population the evolutionary algorithm is applied. The evolutionary algorithm
contains the following operators: the ranking selection, the simple and
arithmetical crossovers, the uniform and boundary mutations and the cloning
(Michalewicz, 1996). As the result a new offspring population is created.

In the optimization algorithm the method of the penalty function is applied.
The penalty function is taken in the form of “penalty of die”. In the consequence
unacceptable chromosomes are eliminated, namely chromosomes which do not
fulfil the introduced constraints.

www.manaraa.com

100 T. Burczyński

The end of the algorithm’s work, i.e. a break in the main loop activity,
occurs after the declared generation number. The algorithm can be also stopped,
when after the specified number of iteration the change of the fitness function is
very small.

The assignation of Young’s moduli to each finite element , 1, 2,...,� �e e R
is performed by the mapping:

� � � �, , , , , , 1, 2,...,* +� �� �/ 0e ee e

E W x y z x y z e R (50)

It means that each finite element can have different material. The procedure

of eliminating finite elements and creating new voids accordingly to values of
eE is the same as described before (Figure 42).

7.4 Additional procedure aiding of evolutionary optimization

In order to improve the optimization process, an additional procedure is
introduced (Figure 47). Values �min and p (adequately minimum stress and stress
increment) are input data to the procedure. The accuracy of obtained solutions
depends on the ascribed values of �min and p. Small values of �min and p
guarantee the more precise solution but it is compensated by the long
computation time.

Figure 47. Additional procedure aiding of evolutionary optimization
(�min - minimum stress, p – stress increment)

www.manaraa.com

Evolutionary and Immune Computations 101

Implementation of this procedure increases:
� the number of chromosomes that fulfil imposed constraints,
� the effectiveness of the optimization algorithm by removing

unnecessary material which is not strained enough.
Besides additional procedure facilitates the smooth shape of the structure
boundary.

7.5 Assignation of materials

The optimization process based on controlling Young’s moduli allows to find the
optimal solution in which each finite element can have a different value of the
Young’s modulus. However, in practice structures are made from a specified
number of materials. Therefore the range of the Young’s modulus value should
be divided into the enforced number of subintervals (equal to the number of
materials). Each subinterval represents another material whose the Young’s
modulus belongs to this subinterval. The subintervals should have the same
length and their centres correspond with Young’s modulus values of suitable
materials. The example of this idea for prescribed 3 different materials is
illustrated in Figure 48.

Figure 48. Idea of introduction of three materials

7.6 Evolutionary optimization algorithm of topology, shape and material
or thickness

Minimization of the fitness functions Eq. (27) or (28) with respect to the
chromosome (34) is performed by means of an evolutionary algorithm with the
floating point representation (Figure 49). After the FEM discretization the
starting population of chromosomes is randomly generated. At the next step the
main loop of the optimization algorithm is performed. Operations included in the
main loop lead to the calculation of the fitness function. It requires that the
boundary-value problem should be solved by FEM. After the calculation of the
fitness function for all of the chromosomes in the population the evolutionary
algorithm is applied. As the result a new offspring population is created. The end
of the algorithm’s work, i.e. a break in the main loop activity, occurs after the

www.manaraa.com

102 T. Burczyński

declared generation number. The algorithm can be also stopped, when through
the specified iteration number the change of the fitness function is very small.

Figure 49. Evolutionary optimization of 2-D and 3-Dstructures

7.7 Examples of topological evolutionary optimization of 2D structures

Three numerical examples are considered for 2-D problems. The structures

are discretized by triangular finite elements and subjected to the volume or stress
constraints. The results of the examples are obtained by use of described
optimization method based on sequential evolutionary algorithm of parameters
included in Table 14. To solve the boundary value problem a professional
program of finite element method – MSC NASTRAN is used. Using proposed
method, material properties or thickness of finite elements are changing
evolutionally and some of them are eliminated. As a result the optimal shape,
topology and material or thickness of the structures are obtained.

www.manaraa.com

Evolutionary and Immune Computations 103

Table 14. Parameters of sequential evolutionary algorithm
Number of chromosomes 100
Probability of cloning 2%
Probability of uniform mutation 5%
Probability of boundary mutation 5%
Probability of simple crossover 10%
Probability of arithmetical crossover 10%
Selection method rang selection

The task of optimization of
shape, topology and distribution of three different materials of the bicycle frame
by minimization of the stress functional and with the volume constraint is
considered. The size of the initial system and boundary conditions are prescribed
according to the person of the mass of 90 kg (Figure 50a).

Table 15. Input data to the optimization task ()

dimensions
; ; ; [mm] forces [kN]

number of
design

variables

range of [105 MPa];
existence or elimination of the

finite element

900 ; 610; 440;
300

Q1=1.0, Q2=0.15,
Q3=5.0,

Q4=7.5, Q5=0.1,
Q6=0.75

16 0.5 < 0.75 elimination
0.75 2.25 existence

thickness of
the plate

[mm]

 ;
[MPa]

materials
[105 MPa]

Vmax
[cm3]

2.0 3.0 ; 3.0
Material 1. E=1.0 for 0.75 < 1.25
Material 2. E=1.5 for 1.25 < 1.75
Material 3. E=2.0 for 1.75 2.25

450

In the present task the set of 16th control points of the interpolation surface
has been introduced (Figure 50b). Input data to the optimization program and
parameters of the evolutionary algorithm are presented in Table 15.

a) b)

Figure 50. A bicycle frame: a) the initial geometry with scheme of loading; b)

distribution of the control points of the interpolation surface

www.manaraa.com

104 T. Burczyński

The results of the optimization are presented as the map of materials
distribution (Figure 51a), the map of stresses (Figure 51b), the shape of
interpolation surface (Figure 51c) and the model of the bicycle (Figure 51d) for
the best obtained solution.

a) b)

c) d)

Figure 51. The results of the evolutionary optimization of a bicycle frame.

The best individual for the t=50th generation: a) distribution of three different
materials; b) the map of stress; c) the shape of interpolation surface; d) model of

the bicycle based on optimal frame

Example 10 – optimization of the bending plate. The task of the optimization of
shape, topology and thickness of the bending plate by minimization of the
volume functional and with the stress constraint is considered. A plate is loaded
with the concentrated force Q1 ÷ Q5 and fixed on the boundary (Figure 52a). In
the present task the set of 16th control points of the interpolation surface has
been introduced (Figure 52b). Input data to the optimization program and
parameters of the evolutionary algorithm are included in Table 16. The results of
the optimization are presented as the map of thickness (Figure 53a), the map of
stresses (Figure 53b) and the shape of interpolation surface (Figure 53c) for the
best obtained solution.

Table 16. Input data to the optimization task (Example 10)
dimensions
a; b [mm]

forces
[kN]

number of design
variables

material
[105 MPa]

600; 200 Q1=Q2=Q3=Q4=0.6, Q5=1.2 16 E=2.0

range of ge [mm];
existence or elimination of the finite element

�min
[MPa]

�max
[MPa]

3.0 � ge < 5.0 elimination; 5.0 � ge � 15.0 existence 4.0 100.0

www.manaraa.com

Evolutionary and Immune Computations 105

 a) b)

Figure 52. A bending plate:

a) the initial geometry with scheme of loading; b) distribution of the control
points of the interpolation surface (¼ part of the geometry)

a) b)

 c)

Figure 53. The results of the evolutionary optimization of the bending

plate. The best individual for the t=50th generation. a) the map of thickness;
b) the map of stress; c) the shape of interpolation surface

www.manaraa.com

106 T. Burczyński

Example 11 – Optimization of a car wheel. The task of the optimization of
shape, topology and thickness of a car wheel by the minimization of the stress
functional and with the volume constraint is considered.

A car wheel geometry of characteristic dimensions, included in Table 17, is
built from three surfaces of revolution (Figure 54): the central surface with the
holes destined for the fastening bolts, the surface of the ring of the wheel and the
surface connecting the two mentioned earlier. The last one is subjected to the
optimization process. The shell-structure is loaded with the tangent force s0
(torsion of the wheel) and with a pressure c0 (pressure in the tyre).

Table 17. Characteristic dimensions of a car wheel
diameter of the wheel LW 355.6 mm
width of a tyre LF 175 mm
diameter of the wheels spacing LK 110 mm
diameter of a wheel hub LP 60 mm
thickness of the wheel hub 30 mm
thickness of a tyre 8 mm

The loadings are applied to the ring of the wheel (Figure 55a). The structure

is stiffly supported around the holes destined for the fastening bolts and is also
supported on the central surface in the direction of the rotation axis of the wheel
(Figure 55a). In the considered task the symmetry of the car wheel (revolution of
the 1/5 part of the structure) during the distribution of the control points of the
interpolation hypersurface has been used (Figure 55b). In this way the number of
design variables (genes) could be decreased and the symmetrical results could be
obtained. This reasoning is purposeful because of the necessity of the car wheel
balance.

Input data to the optimization task and the parameters of evolutionary
algorithm are included in the Tables 18. The results of the optimization are
presented as the maps of thickness (Figure 57a) and the maps of stresses (Figure
57b) for the best obtained solutions. Figure 56 shows the evolution of the best
individual in chosen generations on the example of the evolutionary optimization
of a car wheel.

Table 18. Input data to the optimization task (Example 11)

tangent force 0s
[N]

pressure 0c
[Mpa]

number of design
variables

number of
control points Vmax [cm3]

500 0.22 23 86 5 500

material Range of ge
[mm]

existing of an
element elimination of an element

Aluminium 4 � ge � 20 4 � ge < 10 10 � ge � 20

www.manaraa.com

Evolutionary and Immune Computations 107

Figure 54. Geometry and characteristic dimensions of a car wheel
a) b)

Figure 55. A car wheel: a) the kind of the loading and supporting of the
shell; b) distribution of the control points of the interpolation hypersurface

7.8 Numerical example for 3-D structures

Example 12. A 3-D „L” structure (Figure 58a) with dimensions and loadings

given in Table 19 is optimized for the criterion of minimum of the volume with
constraints imposed on stresses and displacements (Table 20). The Table 21
contains input data. The optimize structures is discretized by cubic finite
elements. The parameters of evolutionary algorithm are included in Table 22 and
material data in Table 23.

Table 19. The dimensions and loading of 3-D structure

Dimensions [mm]
A 48
B 48
C 24
D 24
E 24

Loading [kN]
Q 8.45

www.manaraa.com

108 T. Burczyński

a) b) c)

d) e) f)

 g) h)

Figure 56. Evolution of the best individual in chosen generations on the

example of the evolutionary optimization of a car wheel. The best individual in
the generation No.: a) 1, b) 3, c) 6, d) 9, e) 12, f) 17, g) 45, h) 100

 a) b)

Figure 57. The results of the evolutionary optimization of a car wheel. The
best individual for the t=100th generation: a) the map of thickness; b) the map of

stresses

www.manaraa.com

Evolutionary and Immune Computations 109

Computational results obtained after 73 generations are presented in the form of
a map of the distribution of Young’s moduli (Figure 58 b, c), stresses (Figure 58
d, e) and a map of displacements (Figure 58 f, g). The structure after smoothing
process is presented in Figure 59.

Table 20. Constraints

Constraints
Dimensions of

cubicoid Maximal stress Genes
1�27

48 x 48 x 24 600 MPa 0 � 1

 Maximal
displacement

 0.08 mm

Table 21. Input data

Minimal Young’s module Numbers of chromosomes
0.4 x 22105 MPa 80

Type of interpolation Step of iteration in smooth procedure

multinomial interpolation 25

Table 22. The parameters of evolutionary algorithm

Parameters of evolutionary algorithm
Numbers of design variables Numbers of generations

27 – multinomial interpolation
11 - interpolation bases on the

neighborhood of elements
2000

Probability of cloning Probability of
uniform mutation

Probability of boundary
mutation

10 % 5 % 2 %
Probability of simple crossover Probability of arithmetical crossover

10 % 10 %

Table 23. Material data

Material data
Poisson ratio Young’s module (Emax)

0.3 2e5 MPa

www.manaraa.com

110 T. Burczyński

Figure 58. L structure: a) the scheme of loading, b), c) distribution of
Young’s moduli, d), e) map of stresses f) g) map of displacements b), d), f) the
best solution after first generation, c), e), g) the best solution after optimization

www.manaraa.com

Evolutionary and Immune Computations 111

Figure 59. The optimal L structure after smoothing

8 Evolutionary Multiobjective Optimization

8.1 Introduction

In many real-world engineering problems several aims must be satisfied
simultaneously in order to obtain an optimal solution. In the first phase of the
design process the set of objectives is unclear and the designer has to define
them as precisely as possible. Moreover, for the multiobjective optimization
(Augusto et al, 2006), (Coello, 1999, 2000), (Deb, 1999) the goals are usually in
conflict with each other. For example, the volume of the radiator should be
minimized while the total dissipated heat flux or maximal value of the equivalent
stress should be maximized (or minimized also). The common approach in this
sort of problems is to choose one objective (for example the volume of the
structure) and incorporate the other objectives as constrains. This approach has
been presented in previous works Bia�ecki et al (2005), Burczy�ski and D�ugosz
(2002, 2006) and D�ugosz (2001), but it has the disadvantage of limiting the
choices available to the designer, making the optimization process rather
difficult.

The evolutionary algorithms using the Pareto approach are proposed as the
optimization technique. The fitness function is calculated for each chromosome
in each generation by solving a boundary value problem of thermoelasticity by
means of the FEM (Beer, 1983). The optimized radiators are modelled as
structures subjected to mechanical and thermal boundary conditions. The
interaction of stress and temperature fields is modelled by means of the theory of
the thermoelasticity.

www.manaraa.com

112 T. Burczyński

8.2 Multiobjective optimization

T
nx x xx

ig i mx

p

ih i px

k

T
kf f f fx x x x

V
x

x

eqx
x

q
x

x

FP fP

www.manaraa.com

Evolutionary and Immune Computations 113

decrease some criterion without causing a simultaneous increase of another
criterion. In Figure 60 a bold line is used to marked the set of Pareto optimal
solutions which is called the Pareto front.

Figure 60. An example of the biobjective problem

Considering two solutions vector x and y for a minimization problem, x is

contained in the Pareto front if:

1, 2, ... , : () ()

1, 2, ... , : () ()

3 � �

4 � "

i i

j i

i k f f
and

j k f f

x y

x y
 (57)

The Pareto optimum always gives not a single solutions, but a set of

solutions called non-dominated solutions or efficient solutions.

8.3 Multiobjective evolutionary algorithm

In order to solve the optimization problem the evolutionary algorithm (Arabas,
2001), (Michalewicz, 1996) with the real-coded representation has been
proposed. The solution of this problem is given by the best chromosome whose
genes represent design parameters responsible for shape of heat radiator. The
flow chart of the multiobjective evolutionary algorithm is shown in Figure 61.

The proposed evolutionary algorithm starts with a population of
chromosomes randomly generated. Two kinds of the mutation are applied: the
uniform mutation and the Gaussian mutation. The operator of the uniform
mutation replaces a randomly chosen gene of the chromosome with the new
random value. This value corresponds to the design parameter with its
constrains. For the Gaussian mutation a new value of the gene is created with the
use of Gaussian distribution. The probability of the mutation decides how many
genes will be modified in each population The operator of the simple crossover

www.manaraa.com

114 T. Burczyński

creates two new chromosomes from the two randomly selected chromosomes.
Both chromosomes are cut in randomly position and merge together. In order to
compute k objective functions the thermoelasticity problem is solved.

The selection is performed on the base of a ranking method, information
about Pareto optimal solutions and the similarity of solutions. This procedure is
very similar to the method of selection proposed by Fonseca and Fleming
(1995).

Figure 61. The flow chart of the multiobjective evolutionary algorithm

The Pareto set is determine in the current population using by (57). The

Euclidian distance between all chromosomes is defined as follows:

� �2

1

ED(;) () ()
�

� ��
popsize

i j i j
n

x x x n x n (58)

www.manaraa.com

Evolutionary and Immune Computations 115

The rank of each chromosome depends on the number of individuals by
which is dominated and scaled value of the Euclidian distance. This scheme
helps to conserve diversity in the population. The most similar chromosomes
have less probability to survive.

The next iteration is performed if the stop condition is not fulfilled. The stop
condition is expressed as the maximum number of iterations. The Pareto set in
each generation is stored into file. On the basis of this files the collective Pareto
set of optimal solution is generated.

8.4 Evaluation of the fitness function

The fitness function is computed with the use of the steady-state thermoelsticity.
Elastic body occupied the domain � bounded by the boundary � is considered
(Figure 62)

Figure 62. Elastic structure subjected to thermomechanical boundary
conditions

The governing equations of the linear elasticity and steady-state heat

conduction problem is expressed by the following equations:

, , ,
2 (1) 0

1 2 1 2
��

� � �
� �i jj j ji i
G G vG u u T

v v
 (59)

, 0� �iikT Q (60)

where G is a shear modulus and % is a Poisson ratio, iu is a field of
displacements, � is heat conduction coefficient, k is a thermal conductivity,
T is a temperature and Q is an internal heat source.

The mechanical and thermal boundary conditions for the equations (59) and
(60) take the form:

www.manaraa.com

116 T. Burczyński

_ _

_ _

: ; :

: ; : ; : ()� 5

� � � �

� � � � � � �

it i i u i

T i i q i i c i i

t t u u

T T q q q T T
 (61)

where
_ _ _ _

, , , , ,� 5
i i i iu t T q T is known displacements, tractions, temperatures, heat

fluxes heat conduction coefficient and ambient temperature respectively.
Separate parts of the boundaries must fulfil the following relations:

� � � 6 � � � 6 � 6 �

� 7 � � 8

� 7 � 7 � � 8

t u T q c

t u

T q c

 (62)

In order to solve numerically thermoelasticity problem finite element

method is proposed. After discretization taking into account boundary conditions
following system of linear equations can be obtained:

KU = F
ST = R

 (63)

where K denotes stiffness matrix, S denotes conductivity matrix, U, F, T, R
contain discretized values of the boundary displacements, forces, temperatures
and heat fluxes.

This problem is solved by the FEM software – MENTAT/MARC
(MSC.MARC 2001). The preprocessor MENTAT enables the production of the
geometry, mesh, material properties and settings of the analysis. In order to
evaluate the fitness function for each chromosome following four steps must be
performed:

Step 1 (generated using MENTAT)
Create geometry and mesh on the base of the chromosome genes
Step 2 (generated using MENTAT)
Create the boundary conditions, material properties, settings of the analysis
Step 3 (solved using MARC)
Solves thermoelasticity problem
Step4
Calculate the fitness functions values on the base of the output MARC file

www.manaraa.com

Evolutionary and Immune Computations 117

8.5 Numerical example

Example 13. Consider a radiator whose cross-section is shown in Figure 63a.
The structure is made of copper of following material properties: Young
modulus E=110000Mpa , Poisson ratio 0.35n = , thermal expansion coefficient

6 116.5 10 Ka -= × and thermal conductivity 380 Wk mK= . Six design variables
are assumed: the length of each fin (Z1-Z4), the width of the fins (the same for
all fins – Z5) and thickness Z6. The geometry of the radiator is symmetric. The
total width of the radiator is equal to 0.1m. Table 24 contains limitations of the
design variables. Figure 63b shows thermo-mechanical boundary conditions.
Force 10P N� is applied on each fin. The temperature 0T , ambient temperature

otT and the heat convection coefficient � is equal to 100 , 25 , 20WC C mK� � ,
respectively. The multiobjective problem is to determine the specific dimensions
of the structure which minimizes the set of proposed functionals (54)-(56).

Table 24. The admissible values of the design parameters.

Design variable Min value
[m]

Max value
[m]

Z1, Z2, Z3, Z4 0.01 0.05
Z5 0.0025 0.006
Z6 0.0025 0.008

 a) b)

Figure 63. a) The design variables, b) The geometry and the boundary

conditions

Several numerical experiments were performed. The set of Pareto optimal

solutions with an example of the obtained shape for the minimization both: the
volume of the radiator (f1) and the maximal value of the equivalent stresses (f2)
is presented in Figure 64a. Figure 64b contains the results for the maximization
of the total dissipated heat flux and the minimization of the equivalent stresses

www.manaraa.com

118 T. Burczyński

(f2) simultaneously. The set of Pareto solutions obtained for three proposed
criterion (f1 – volume, f2 – equivalent stress, f3 – heat flux), are presented in
Figure 65.

a) b)

Figure 64. The set of Pareto optimal solution for the two criterion

Figure 65. The set of Pareto optimal solution for the three criterion

8.6 Concluding remarks

The multiobjective shape optimization of heat radiators has been presented in the
section. The proposed multiobjective evolutionary algorithm gives the designer
the set of optimal solutions based on more than one criterion. The choice of one
objective and incorporate the other objectives as constrains requires performing
optimization many times with different values of the constrains. Such approach
makes the optimization process rather inadequate and difficult. Proposed

www.manaraa.com

Evolutionary and Immune Computations 119

approach is also more convenient than, for instance, to the “weighting method”
in which fitness function is defined as a sum of objective functions and
appropriate weights.

9 Immune Optimization

9.1 Introduction

The section deals with an application of global optimization method like the
artificial immune system to the optimization problems. The main feature of these
methods is to simulate biological processes. The artificial immune system is
based on the mechanism discovered in biological immune systems. The main
advantage of artificial immune system is the fact that these approach does not
need any information about the gradient of the fitness function and gives a strong
probability of finding the global optimum. The main drawback of the approach is
the long time of calculations.

9.2 Artificial immune system

The artificial immune systems (Castro and Timmis, 2003), (Wierzcho�, 2001)
are developed on the basis of a mechanism discovered in biological immune
systems. The biological immune system is a complex system which contains
distributed groups of specialized cells and organs. The main purpose of the
immune system is to recognize and destroy pathogens - funguses, viruses,
bacteria and improper functioning cells. The lymphocytes cells play a very
important role in the immune system. The lymphocytes are divided into several
groups of cells. There are two main groups B and T cells, both contains some
subgroups (like B-T dependent or B-T independent). The B cells contain
antibodies, which could neutralize pathogens and are also used to recognize
pathogens. There is a big diversity between antibodies of the B cells, allowing
recognition and neutralization of many different pathogens. The B cells are
produced in the bone marrow in long bones. A B cell undergoes a mutation
process to achieve big diversity of antibodies. The T cells mature in thymus,
only T cells recognizing non self cells are released to the lymphatic and the
blood systems. There are also other cells like macrophages with presenting
properties, the pathogens are processed by a cell and presented by using MHC
(Major Histocompatibility Complex) proteins. The recognition of a pathogen is
performed in a few steps (Figure 66).

First, the B cells or macrophages present the pathogen to a T cell using
MHC (Figure 66b), the T cell decides if the presented antigen is a pathogen. The
T cell gives a chemical signal to B cells to release antibodies. A part of
stimulated B cells goes to a lymph node and proliferate (clone) (Figure 66c). A
part of the B cells changes into memory cells, the rest of them secrete antibodies

www.manaraa.com

120 T. Burczyński

into blood. The secondary response of the immunology system in the presence of
known pathogens is faster because of memory cells. The memory cells created
during primary response, proliferate and the antibodies are secreted to blood
(Figure 66d). The antibodies bind to pathogens and neutralize them. Other cells
like macrophages destroy pathogens (Figure 66e). The number of lymphocytes
in the organism changes, while the presence of pathogens increases, but after
attacks a part of the lymphocytes is removed from the organism.

 a) b)

 c) d)

 e)

Figure 66. An immune system, a) a B cell and pathogen,
b) the recognition of pathogen using B and T cells, c) the proliferation of

activated B cells, d) the proliferation of a memory cell – secondary response, e)
pathogen absorption by a macrophage

The artificial immune systems (AIS) (Castro and Timmis, 2003) take only a

few elements from the biological immune systems. The most frequently used are
the mutation of the B cells, proliferation, memory cells, and recognition by using
the B and T cells. The artificial immune systems have been used to optimization
problems, classification and also computer viruses recognition. The cloning

www.manaraa.com

Evolutionary and Immune Computations 121

algorithm Clonalg uses some mechanisms similar to biological immune systems
to global optimization problems. The unknown global optimum is the searched
pathogen. The memory cells contain design variables and proliferate during the
optimization process. The B cells created from memory cells undergo mutation.
The B cells evaluate and better ones exchange memory cells. In Wierzcho�
(2001) version of Clonalg the crowding mechanism is used - the diverse
between memory cells is forced. A new memory cell is randomly created and
substitutes the old one, if two memory cells have similar design variables. The
crowding mechanism allows finding not only the global optimum but also other
local ones. The presented approach is based on the Wierzcho� (2001) algorithm,
but the mutation operator is changed. The Gaussian mutation is used instead of
the nonuniform mutation in the presented approach.

The Figure 67 presents the flowchart of an artificial immune system.

Figure 67. An artificial immune system

The memory cells are created randomly. They proliferate and mutate

creating B cells. The number of nc clones created by each memory cell is
determined by the memory cells objective function value. The objective
functions for B cells are evaluated. The selection process exchanges some
memory cells for better B cells. The selection is performed on the basis of the
geometrical distance between each memory cell and B cells (measured by using
design variables). The crowding mechanism removes similar memory cells. The
similarity is also determined as the geometrical distance between memory cells.
The process is iteratively repeated until the stop condition is fulfilled. The stop
condition can be expressed as the maximum number of iterations.

www.manaraa.com

122 T. Burczyński

9.3 Comparison of EA and AIS

The numerical examples present the comparison between an artificial immune
system and the sequential and distributed evolutionary algorithms. The
comparison is performed on the base of the optimization of the known
mathematical functions, i.e.: the Branin function with 2 design variables, the
Goldstein-Price function with 2 design variables, the Rastrigin function with 20
design variables, and the Griewangk function with 20 design variables (Figure
68), for the best parameters of the algorithms (detected earlier for these
functions).

In order to find the optimal parameters of the artificial immune system, the
algorithm has been tested with the change of the most important of them, i.e.:
number of memory cells, number of clons, range of the Gaussian mutation and
the crowding factor. The range of the changes of the particular parameters of the
artificial immune system is presented in the Table 25. The results of the stage of
the optimal parameters selection for particular mathematical functions are
included in the Table 26.

Table 25. The range of the changes of the artificial immune system parameters

the number of
memory cells

the number of
the clones crowding factor Gaussian mutation

2, 4, 6, …, 100 2, 4, 6, …, 100 0,01; 0,02; …; 1.0 0,1; 0,2; …; 1.0

Table 26. The optimal parameters of the artificial immune system
for particular functions

the number of
memory cells

the number of the
clones crowding factor Gaussian mutation

BRANIN
2 2 0.48 0.1

GOLDSTEIN-PRICE
12 2 0.45 0.5

RASTRIGIN
2 4 0.45 0.4

GRIEWANGK
2 2 0.45 0.1

www.manaraa.com

Evolutionary and Immune Computations 123

 a)

� �
2

2
2 1 1 12

5 5 1() 6 10 1 cos 10
4 8

F x x x x x
9 9 9

� � � �� � � � � � �� � � �
� � � �

150,105 21 ����� xx
� � � � � �

� �
min ,12.275 ,2.275

9.42478,2.475 0.397887

F x F F

F

9 9� � � �

�

b)
� � � �� �

� � � �� �

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

() 1 1 19 14 13 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x x

x x x x x x x x

� � � � � � � � �

� � � � � � �

22 ��� ix
� � � � 31,0min �� FxF

 c)

� �� �2

1
() 10 10cos 2

n

i i
i

F x n x x9
�

� � ��

� �5.12 5.12ix� � �
� � � �min 0,0, ,0 0F x F� ��

for n =2

d)
2

1 1

() 1 cos
4000

nn
i i

i i

x xF x
i� �

� �� �� � � � �� �
� �� �

� :

� �600 600ix� � �
� � � �min 0,0, ,0 0F x F� ��

for n =2

Figure 68. Tested mathematical functions: a) Branin function,
b) Goldstein-Price function, c) Rastrigin function,

d) Griewangk function

The sequential and distributed evolutionary algorithms applied for

comparison with the artificial immune system uses evolutionary operators like
the simple crossover and the Gaussian mutation. The selection is performed by
the use of the ranking method. The optimal probabilities of the evolutionary
parameters for particular mathematical functions are presented in the Table 27.

The result of the comparison between an artificial immune system and the
sequential and distributed evolutionary algorithms are presented in the Table 28
and shown in the Figure 69.

www.manaraa.com

124 T. Burczyński

The numbers of the objective function evaluations needed to the achievment
of the value:
below 0.5 for the Branin function, below 3.1 for the Goldstein-Price function,
below 0.1 for the Rastrigin function, below 0.1 for the Griewangk function have
been compared.

Table 27. The optimal parameters of sequential and distributed evolutionary
algorithms for particular functions

The number of
subpopulations

The number of
chromosomes in each

subpopulation

The probability of
simple crossover

The probability of
Gaussian mutation

BRANIN
1 20 100% 100%
2 10 100% 100%

GOLDSTEIN-PRICE
1 20 100% 100%
3 7 100% 100%

RASTRIGIN
1 20 100% 100%
2 10 100% 100%

GRIEWANGK
1 10 100% 100%
2 5 100% 100%

Table 28. The result of the comparison between an artificial immune system and

the sequential and distributed evolutionary algorithms – comparison of the
average number objective function evaluations

Sequential EA Distributed EA artificial immune
system

Average number objective function evaluations
BRANIN

188 155 171
GOLDSTEIN-PRICE

287 188 325
RASTRIGIN

9293 4659 7897
GRIEWANGK

22285 13594 6019

www.manaraa.com

Evolutionary and Immune Computations 125

a) b)

 c) d)

Figure 69. Comparison between AIS and EAs for: a) Branin function, b)

Goldstein-Price function, c) Rastrigin function, d) Griewangk function

9.4 Topology immune optimization

Two numerical examples of immune optimization of topology structures:
; a plate in plane stress (Example 14),
; a solid body (Example 15),

by the minimization of the mass with imposed stress or displacement constraints
are considered. The structures are considered in the framework of the theory of
elasticity. The results of the examples are obtained by using an optimization
method based on the artificial immune system with the parameters included in
Table 29.

www.manaraa.com

126 T. Burczyński

Table 29. The parameters of the artificial immune system

the number of memory cells 8

the number of the clones 4

crowding factor 25%
Gaussian mutation 20%

Example 14 – Immune optimization of a plate in plane stress. A rectangular 2-D
structure (plane stress), of dimensions 100 < 200 mm, loaded with the
concentrated force P in the centre of the lower boundary and fixed on the bottom
corners is considered.

Figure 70. The plate (example 1); a) the geometry; b) the distribution of the

control points of the interpolation surface

a) b)

 c) d)

Figure 71. The results of the immune optimization of the plate: a) the
solution of the optimization task; b) the map of mass densities; c) the map of

stresses; d) the map of the displacement

www.manaraa.com

Evolutionary and Immune Computations 127

Due to the symmetry a half of the structure has been analyzed. The input

data and parameters of the artificial immune system are included in Table 30 and
29, respectively.

The geometry, the distribution of the control points of the interpolation
surface are shown in the Figure 70a and 70b, respectively. The results of the
optimization process are presented in the Figure 71.

Table 30. The input data to the optimization task of a shell bracket

�ad
[MPa]

the thickness
[mm]

�min ; p
[MPa] P1 [kN] range of �e [g/cm3]

80.0 4.0 1.0 ; 1.0 2.0 7.3 � �e < 7.5 elimination
7.5 � �e � 7.86 existence

Example 15 – Immune optimization of a solid body. A 3-D structure with
dimensions and loading is presented in the Figure 72a and 72b. The input data to
the optimization program is included in Table 31.

The geometry, the distribution of the control points of the interpolation
hyper surface are shown in the Figure 72c. The results of the optimization
process are presented in the Figure 73 and Figure 74.

Figure 72. Two cases of loading with the hyper surface
a) first case (compression), b) second case (tension),

c) the distribution of the control points of the interpolation hyper surface

Table 31 Input data - geometry and loading

Dimensions [mm] Loading Q
a b c compression tension

100 100 100 -36.3 [KN] 36.3 [KN]

www.manaraa.com

128 T. Burczyński

Figure 73. Distribution of mass density for the first case (compression)
a), b) structure after 50 iteration (the best solution) c) structure after smooth

Figure 74. Distribution of mass density for the second case (tension)

a), b) structure after 50 iteration (the best solution) c) structure after smooth

9.5 Concluding remarks

Taking into account the results of the comparison between the artificial immune
system and the sequential and distributed evolutionary algorithms, performed on
the basis of selected mathematical functions, one can conclude that the
convergence to the global minimum depends on the optimization problem:

• for the Griewangk function the AIS is more effective than SEA and
DEA,

• for the Goldstein-Price function the AIS is less effective than SEA and
DEA,

• for the Branin and the Rastrigin functions the AIS is more effective
than SEA but less than DEA.

Artificial immune systems can be considered as alternative to evolutionary
algorithms intelligent global optimization techniques very useful in structural
optimization.

www.manaraa.com

Evolutionary and Immune Computations 129

Bibliography

Aleander, J.T. (2000). An Indexed Bibliography of Distributed Genetic
Algorithms, University of Vaasa, Report 94-1-PARA, Vaasa, Finland.

Anagnostou, G. Rønquist, E. and Patera, A. (1992). A computational procedure
for part design. Computer Methods in Applied Mechanics and Engineering
97:33-48.

António, C.A.C. and Douardo, N.M. (2002). Metal-forming optimization by
inverse evolutionary search, Journal of Material Processing Technology
121: 403-413.

Arabas, J. (201). Lectures on Evolutionary Algorithms. WNT, Warszawa.
Augusto, O.B., Rabeau, S., Dépincé, Ph. and Bennis, F. (2006). Multi-

objectivegenetic algorithms: A way to improve the convergence rate.
Engineering Applications of Artificial Intelligence 19:501-510.

Badrinarayanan, S. (1997). Preform and die design problems in metalforming,
Ph.D. thesis, Cornell University.

Beer, G. (1983). Finite element, boundary element and coupled analysis of
unbounded problems in elastostastics. Int. J. Numer. Meth. Eng., 19: 567-
580.

Bia�ecki, R.A., Burczy�ski, T., D�ugosz, A., Ku�, W. and Ostrowski, Z. (2005).
Evolutionary shape optimization of thermolastic bodies exchanging heat by
convection and radiation. Computer Methods in Applied Mechanics and
Engineering 194:1839-1859.

Bendsøe, M. P. and Kikuchi, N. (1988). Generating optimal topologies in
structural design using a homogenization method. Computer Methods in
Applied Mechanics and Engineering 71: 197-224.

Bendsoe, M. P. and Soko�owski, J. (1988). Design sensitivity analysis of elastic-
plastic problems. Mechanics of Structures and Machines 16: 81-102.

Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C (1984). Boundary Element
Techniques. Springer –Verlag, Berlin.

Burczy�ski, T. (1995). The Boundary Element Method in Mechanics. WNT,
Warsaw.

Burczy�ski, T. and D�ugosz, A. (2002). Evolutionary optimization in
thermoelastic problems using boundary element method. Computational
Mechanics, 28: 317-324.

Burczy�ski, T., D�ugosz, A. and Ku�, W. (2006). Parallel evolutionary
algorithms in shape optimization of heat radiators. Journal of Theoretical
and Applied Mechanics 44: 351-366.

Burczy�ski, T. and Kokot, G. (1998). Topology optimization using boundary
elements and genetic algorithms. Proc. Fourth Congress on Computational
Mechanics, New Trends and Applications, (eds. Idelsohn S.R., O�ate E.,
Dvorkin E.N.), Barcelona, CD-rom.

www.manaraa.com

130 T. Burczyński

Burczy�ski, T., and Ku�, W. (2001). Application of evolutionary algorithms in
optimal design of elasto-plastic structures. Computer Methods in Materials
Science 1:189-195.

Burczy�ski, T. and Ku�, W. (2003). Optimal design of elasto-plastic structures
using sequential and distributed evolutionary algorithms. Chapter 3 in
Information Technology in Process Engineering of Metals (Eds. A. Piela, F.
Grosman,J. Kusiak, M.Pietrzyk), Gliwice, 108-142.

Burczy�ski, T. and Ku�, W. (2004). Optimization of structures using distributed
and parallel evolutionary algorithms. Parallel Processing and Applied
Mathematics, Lecture Notes on Computational Sciences 3019, Springer, 572-
579.

Burczy�ski, T., Ku�, W., D�ugosz, A. and Orantek, P. (2004). Optimization and
identification using distributed evolutionary algorithms, Engineering
Applications of Artificial Intelligence 17: 337-344.

Burczy�ski, T. and Osyczka, A. (eds) (2004). Evolutionary Methods in
Mechanics. Kluwer, Dordrecht.

Burczy�ski, T., Poteralski, A. and Szczepanik, M. (2003). Genetic generation of
2-D and 3-D structures. In: Computational Fluid and Solid Mechanics 2003
(ed. K.J. Bathe), Vol. 2, Proc. Second M.I.T. Conference on Computational
Fluid and Solid Mechanics Institute of Technology, Cambridge,
Massachusetts 02139 U.S.A. Elsevier, 2221-2225.

Burczy�ski, T., Poteralski, A. and Szczepanik, M. (2007). Topological
evolutionary computing in the optimal design of 2D and 3D structures.
Engineering Optimization 39:811-830.

Cantu-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs
Paralleles, Reseaux et Systems Repartis 10: 141-171.

Cantu-Paz, E. (1999). Migration policies, selection pressure, and parallel
evolutionary algorithms. In Brave S., Wu. A. (Eds), Late Breaking Papers at
the Genetic and Evolutionary Computation Conference. Orlando FL.

Cantu-Paz, E. (2000). On the effect of migration on the fitness distribution of
parallel evolutionary algorithms. In Workshop on Evolutionary Computation
and Parallel Processing at GECCO-2000, Las Vegas, NV, 3-6.

Castro, L.N. and J. Timmis (2003) Artificial immune systems as a novel soft
computing paradigm. Soft Computing 7(8): 526-544.

Coello, C.A. (1999). A comprehensive survey of evolutionary-based
multiobjective optimization techniques. Knowledge and Information
Systems. 1(3): 129-156.

Coello, C.A. and Christiansen, A.D. (2000). Multiobjective optimization of
trusses using genetic algorithms. Computers and Structures 75:647-660.

Chapman, C., Saitou, K. and Jakiela, M. (1995): Genetic algorithms as an
approach to configuration and topology design. ASME Journal of
Mechanical Design 45.

www.manaraa.com

Evolutionary and Immune Computations 131

Deb, K. (1999). Multi-objective genetic algorithms: problem difficulties and
construction of test problems. Evolutionary Computation 7(3): 205-230.

D�ugosz, A. (2004). Evolutionary computation in thermoelastic problems. In:
Evolutionary Methods in Mechanics (eds. T. Burczy�ski and A. Osyczka).
Kluwer, Dordrecht, 69-80.

D�ugosz, A., (2001). Boundary element method in sensitivity analysis and
optimisation of thermoelastic structures, PhD thesis, Silesian University of
Technology, Gliwice.

Eschenauer, H.A. and Schumacher, A. (1995). Simultaneous shape and topology
optimization of structures. Proc. First World Congress of Structural and
Multidisciplinary Optimization, (eds. Olhoff N., Rozvany G.I.N.) Pergamon,
Oxford, 177-184.

Fonseca, C. M. and Fleming, P.J. (1995). An overview of evolutionary
algorithms in multiobjective optimization. Evolutionary Computation 3(1):
1-16.

Jensen, E. (1992). Topological Structural Design Using Genetic Algorithms.
Doctor of Philosophy Thesis, Purdue University.

Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983). Optimization by simulated
annealing. Science 220: 671-680.

Ku�, W. (2002). Coupled Boundary and Finite Element Methods in
Optimization of Mechanical Structures. Ph.D. Thesis, Gliwice.

Ku�, W. and Burczy�ski, T. (2004). Distributed evolutionary algorithms in
optimization of nonlinear solids. In: Evolutionary Methods in Mechanics,
(eds. T. Burczy�ski, A. Osyczka). Kluwer, Dordrecht, 229-240.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolutionary
Algorithms. Springer-Verlag, Berlin.

MSC.MARC (2001). Theory and user information Vol. A-D, MSC Software
Corporation.

Piegl, L. and Tiller W. (1997). The NURBS Book. Springer- Verlag. Berlin.
Sandgren, E., Jensen, E. and Welton, J. (1990). Topological design of structural

components using genetic optimizastion methods, Proc. Winter annual
meeting of the American Society of Mechanical Engineers, Dallas, Texas,
31-43.

Shewchuk, J. R. (1996). Triangle: engineering a 2D quality mesh generator and
Delaunay triangulator, First Workshop on Applied Computational Geometry,
Association for Computing Machinery, Philadelphia, Pennsylvania, USA.
124-133.

Szczepanik, M. (2003). Optimization of 2-D Structures Using Evolutionary
Algorithms. Ph. D. Thesis, Silesian University of Technology, Gliwice.

Tanese, R. (1989). Distributed genetic algorithms. Proc. 3rd ICGA (ed. J.D.
Schaffer),. San Mateo, USA, 434-439.

Xie, Y.M. and Steven, G.P. (1997). Evolutionary Structural Optimization.
Springer, London.

www.manaraa.com

132 T. Burczyński

Wierzcho�, S.T. (2001). Artificial Immune Systems: Theory and Applications.
EXIT, Warsaw.

Woon, S.Y., Tong, L., Querin, O.M. and Steven, G.P. (2003). Optimising
topologies through a Multi-GA System. Proc. 5th World Congress on
Structural and Multidisciplinary Optimization WCSMO 2003, Italy, Venice.

Zabaras, N. Bao, Y., Srikanth, A. and Frazier, W. G. (2000). A continuum
Lagrangian sensitivity analysis for metal forming processes with applications
to die design problems, Int. J. Numer. Meth. Engng 48: 679 –720.

Zhao, X., Zhao, G., Wang, G. and Wang, T. (2002). Preform die shape design
for uniformity of deformation in forging based on preform sensitivity
analysis. Journal of Material Processing Technology 128: 25-32.

Zienkiewicz, O.C. and Taylor, R.L. (2000). The Finite Element Method, Solid
Mechanics. Butterworth, Oxford.

www.manaraa.com

CHAPTER 3

Applications of GA and GP to Industrial Design
Optimization and Inverse Problems

V.V. Toropov1,2, L.F. Alvarez, O.M. Querin2
1School of Civil Engineering,

 2School of Mechanical Engineering, University of Leeds, UK

Abstract. In this chapter the use of Genetic Algorithms and Genetic Pro-
gramming for various industrial problems is discussed. Particular attention
is paid to the case of difficult design optimization problems in which either
(or both) (i) response functions are computationally expensive as well as
affected by numerical noise and (ii) design variables are defined on a set of
discrete variables.

1 Introduction

Many real-life design optimization problems have the following common features
that make application of well-established gradient-based optimization algorithms
difficult, if not impossible:
– the objective and constraint functions are evaluated as a result of expensive

numerical computations, e.g. using an FEM or a CFD code;
– function values and/or their derivatives may contain numerical noise;
– domain-dependent calculability of response functions, i.e. situations when

these functions cannot be evaluated at some points of the design variable
space;

– design variables are defined on a set of discrete values.

The first three features also arise in industrial problems of stochastic analysis,
particularly when a Monte Carlo simulation is performed. Hence the only realis-
tic way of addressing such problems is to build high quality metamodels (also
referred to as surrogate models or global approximations) that (i) describe the
behaviour of the system (or a process) with a sufficient accuracy as compared to
simulation, (ii) are computationally inexpensive and (iii) do not possess any
significant amount of numerical noise. When such metamodels are obtained and
their quality verified, it becomes possible to use them in optimization or a Monte
Carlo simulation in lieu of expensive simulations.

The last feature mentioned above, the discrete nature of design variables, is
most typically addressed by the use of suitable optimization techniques, of which

www.manaraa.com

134 V.V. Toropov, L.F. Alvarez and O.M. Querin

a Genetic Algorithm is currently the most popular choice. Such an algorithm
may be calling a numerical simulation directly (when it is feasible) or used in
conjunction with a metamodel that has been built previously. Sections 2 and 3
show applications of such techniques.

In order to build a metamodel it is necessary to perform sampling by running
a sufficient number of numerical simulations in the space of optimization vari-
ables and/or stochastic factors according to a carefully chosen design of
experiments (DOE). Experiments usually mean numerical simulation at various
combinations of optimization or stochastic variables but may also include labo-
ratory or in situ experiments. Uniform designs of experiments that are based on
the concept of an optimal Latin hypercube have been developed with the inten-
tion of gathering as much information on the behaviour of the system (or a
process) as possible with a minimum number of sampling points. These include
nested (i.e. individual uniform DOEs used separately for metamodel building
and validation and then can be merged while remaining uniform) and extended
(to include pre-defined sampling points while preserving uniformity of a DOE).
Section 4 describes the use of permutation GA for the creation of uniform
DOEs.

The most typically used metamodelling techniques include:
; Response surface methodology that is further divided into the following

classes:
– Linear (e.g. polynomial) regression
– Nonlinear regression
– Mechanistic models
– Application of the Genetic Programming methodology for selection of

the structure of an analytical expression treated as a metamodel. This
has been used for creating analytical descriptions of various engineer-
ing systems and processes, also using data produced by laboratory
experimentation, Toropov (2001).

; Artificial neural networks
; Radial basis functions
; Kriging, Matheron (1963)
; Multivariate Adaptive Regression Splines (MARS), Freedman (1991)
; Metamodelling based on the interaction of low- and high-fidelity simula-

tion models that is beneficial for creating high quality metamodels when a
lower complexity simulation model is available in addition to the original
high fidelity simulation model. In such a case the metamodel can be based
on that low fidelity model which is corrected and tuned using only a small
number of runs of the high fidelity model, Toropov (2001)

; Moving Lest Squares Method (MLSM), Choi et al. (2001), Toropov et al.
(2005), is a global metamodelling technique that is flexible enough to de-
scribe the sampling data with high accuracy when the amount of

www.manaraa.com

Applications of GA and GP 135

numerical noise is small (in such case it is similar to kriging) but also has
a capability of filtering out numerical noise when it becomes an issue.

Once the metamodel has been obtained and verified, various optimization
techniques can be used, these include genetic algorithms (particularly when
design variables are defined on a set of discrete variables) and gradient-based
optimization methods. In the case of stochastic analysis, a large Monte Carlo
simulation can be performed in order to assess reliability and robustness of a
system or a process.

Sections 5, 6 and 7 show applications of Genetic Programming to metamodel
building.

2 Weight Optimization of a Formula One Car Composite
Component Using Genetic Algortithm

In the development of a new Formula One car, the design process takes ap-
proximately four months and has to go through as many iterations as possible. In
such a competitive environment small improvements can be crucial, and the use
of a robust technology to produce the best possible design is an advantage.

Following a review of industry practice (Nevey and Stephens, 2000), there
appears to be no consistent commercial approach for the application of optimiza-
tion techniques to composite laminates.

A genetic algorithm (GA) has been applied to search for the optimum combi-
nation of discrete design variables (fibre orientation and number of plies) that
produce the maximum structural stiffness at the lowest mass. Simulations of the
composite components have been performed using the linear static analysis code
Altair OptiStruct (2000).

An application is presented where the developed methodology is applied to
the weight optimization of the Jaguar R3 front wing, Stephens et al. (2002).

2.1 Optimization problem

The definition of a directional fibrous laminated composite requires the specifi-
cation of the fibre direction and the number of plies, see Figure 1. The ultimate
objective of the optimization methodology is to automatically determine the
optimum laminate configuration (e.g. the optimum number of plies and the ori-
entation of every ply).

The optimization problem is to minimize the weight F0(x) of a laminated
composite component, subject to various constraints Fj(x). The design variables
x are the orientation of the fibre and the number of plies, which have been
grouped into bundles for manufacturing requirements:

www.manaraa.com

136 V.V. Toropov, L.F. Alvarez and O.M. Querin

� � � � � �
� �NiBxA

MjFF

iii

j

,...,1

,,...,11min,0

���

��= xx
 (1)

2.2 Genetic algorithm

A genetic algorithm (Goldberg, 1989) is a machine learning technique modelled
upon the natural process of evolution. Genetic algorithms differ from conven-
tional optimization techniques in that they work on a whole population of
individual objects of finite length, typically binary strings (chromosomes), which
encode candidate solutions using a problem-specific representation scheme.
These strings are decoded and evaluated for their fitness, which is a measure of
how good a particular solution is. Following Darwin's principle of survival of
the fittest, strings with higher fitness values have a higher probability of being
selected for mating purposes to produce the next generation of candidate solu-
tions.

Baseline configuration Optimized lay-up

Figure 1. Optimization of a composite laminate

Selected individual design solutions are reproduced through the application of
genetic operators. A string selected for mating is paired with another string and
with a certain probability each pair of parents undergo crossover (sexual recom-
bination) and mutation. The strings that result from this process, the children,
become members of the next generation of candidate solutions.

This process is repeated for many generations in order to artificially evolve a
population of strings that yield a solution to a given problem, see Figure 2. For
full detail of GA theory applied to the optimization of composites, see Gürdal et
al. (1999).

www.manaraa.com

Applications of GA and GP 137

Genetic
Search

Fitness

Selection

ReproductionCrossover

Mutation

Figure 2. Evolutionary algorithm

The main features of the GA used in this study are:
; A small percentage of the population, the elite, is transferred unchanged to

the next generation.
; Uniform crossover (Figure 3) creates an offspring by copying bits from the

corresponding parents selected randomly and with equal probability.

1 0 1 1 0 0 1 1 0 1

0 1 1 1 1 0 1 1 0 1

Parent 1

Offspring

0 1 0 1 1 1 1 0 1 1Parent 2
Figure 3. Uniform crossover

; Tournament selection of size two (or more) selects the best individual from
a subpopulation of two (or more) randomly selected strings.

; Linear scaling of the fitness function applies the transformation

Fscaled = a * F + b

where F is the actual fitness of an individual and a and b are derived from
the coordinate system change [Fav , Fmax] to [Fav , c*Fmax] as follows:

� � � � av
avmax

av Fab
FF

Fca ��
�

�
� 1

1

where, for a current population, Fav is the average fitness value and Fmax is
the fitness value of the best individual. In this study, c was taken as 3. If

www.manaraa.com

138 V.V. Toropov, L.F. Alvarez and O.M. Querin

Fscaled goes negative, the corresponding individual is repeatedly replaced
with another one created randomly until Fscaled becomes positive.

; Gray coding is a binary string representation such that 2 consecutive num-
bers differ in only 1 bit (Figure 4).

0 0 1 1

GrayBinaryDecimal

0 1 0 0

0 0 1 0

0 1 1 0

3

4

Figure 4. Gray coding

This coding is less disruptive than binary coding for the mutation operator
and makes the search more incremental.

Assuming G is a Gray coded string with n bits [Gn Gn-1 … G1] where Gn is
the most significant bit, B is the corresponding binary coded string [Bn
Bn-1 … B1], and ^ is the bitwise exclusive OR operator (XOR), the conver-
sion algorithms are:

o From Gray to binary:
j = n; Bj = Gj

j = n-1 � 1; Bj = Bj+1 ^ Gj

o From binary to Gray:
j = n; Gj = Bj

j = n-1 � 1; Gj = Bj+1 ^ Bj

; Local search (Sahab, 2001) performs a coordinate search in the positive and

negative direction through all the variables (Figure 5). In this search:
� Initial starting point is the optimum solution returned from the GA.
� The increment steps Dx are those defined for the corresponding discrete

variables. Steps are increased or decreased within the variable range.
� Every new solution serves as starting guess for another local search, until

no improvement can be found.

; If two strings have the same fitness, one of them is deleted and a new one
randomly created.

www.manaraa.com

Applications of GA and GP 139

Figure 5. Local search

For constrained optimization problems, an exterior penalty function can be
adopted to transform a constrained optimization problem into an unconstrained
one. Penalty functions are defined in the exterior of the feasible domain, so that
constraints are applied only when they are violated. The fitness function is de-
fined as follows:

Fitness = � ��
� -

-
0

+

,
,
/

*
��

M

i

t
jFmaxrF

1
0 0,1)()(xx (2)

where 0F is the normalised objective function, r is a penalty multiplier and t
defines the power of the penalty function.

GA parameters

The following parameters have been assumed in the optimization process:

; Population size: 200
; Elite: 10%
; Mutation: 1%
; 50% of the population with the worst fitness are replaced in every

 generation.
; Gray coding with vacant positions (if available) filled with bits from the

beginning of the string.
; In the expression (2), penalty multiplier r = 10 and linear penalty func-

tion (t = 1) lead to a moderate penalisation which sometimes allows for
unfeasible solutions. A quadratic penalty functions (t = 2) would typi-

www.manaraa.com

140 V.V. Toropov, L.F. Alvarez and O.M. Querin

cally converge to an unfeasible solution, while a square root penalty
function (t = 0.5) would be a conservative approach and converge in the
feasible domain.

2.3 Front wing optimization

The final objective of this study was to optimise the weight of the front wing in
the Jaguar R3 Formula One car for the 2002 racing season. The baseline model
was divided into 5 designable areas with 3 bundles of plies in each section, see
Figure 6. This lay-up defines 15 fibre angles and 15 numbers of plies. The allo-
cation of design variables assumed that the model is symmetric about the
centreline of the wing.

Figure 6. R3 front wing lay-up

The problem was to minimize the mass of the wing, subject to the following
normalised constraints:

; Maximum displacement under a 50 kg mass placed on the wing (FIA regu-
lation, FIA, 2002) � 1 mm.

; Maximum displacement under aerodynamic loading (calculated from a
CFD analysis) � 1 mm.

DV1-3

DV4-6
DV7-9 DV10-12

DV13-15

Non-designable bundles Designable bundles (design variables)

Bundle 2

Bundle 2

Bundle 3
Bundle 3

Bundle 1

Bundle 1

DV1-3

DV4-6
DV7-9 DV10-12

DV13-15

DV1-3

DV4-6
DV7-9 DV10-12

DV13-15

Non-designable bundles Designable bundles (design variables)

Bundle 2

Bundle 2

Bundle 3
Bundle 3

Bundle 1

Bundle 1

Non-designable bundles Designable bundles (design variables)

Bundle 2

Bundle 2

Bundle 3
Bundle 3

Bundle 1

Bundle 1

www.manaraa.com

Applications of GA and GP 141

; Twist under aerodynamic loading (relative displacement of the leading and
 trailing edge) � 1 mm.

The optimization was carried out for both fibre orientation and number of
plies concurrently. The proposed methodology achieved a 5% saving over the
baseline weight of the wing. The GA convergence history is plotted in Figure 7.

Figure 7. GA convergence history

2.3 Conclusion

A methodology for optimising composite lay-ups combines a genetic algorithm
with a Finite Element software and finds concurrently the fibre orientation and
the number of plies.

The results of the optimization have been used in the following ways:
; It showed trends of the wing lay-up, i.e. biased more to the reduction of
bending in the middle of the wing and biased more to the reduction of twist at
the outer edge.

; The final results produced the wing lay-up that was put into the front wing
for the R3 Formula One car.

3 Application of Optimization Techniques to Structural
Damage Recognition

An identification of the location and degree of damage sustained by an engineering
structure is often of considerable importance in structural engineering practice.
Visual inspection and extensive field testing are usually employed to locate and
quantify the degree of degradation of a structure but this can be expensive and time
consuming. An alternative method of non-destructive testing is based on the moni-
toring of changes in dynamic structural characteristics such as natural frequencies.
These can be obtained by measurements at a limited number of points of the struc-
ture (often even one point) and are relatively independent of the chosen location.
Most importantly, these characteristics are sensitive to changes in the mass and

4.9

5.1

5.3

5.5

5.7

5.9

Generations

M
as

s
(K

g)

www.manaraa.com

142 V.V. Toropov, L.F. Alvarez and O.M. Querin

stiffness of the structure. Therefore, data on the changes in the dynamic character-
istics can be used to calculate local decrease in the stiffness which indicates the
presence of the structural damage. The problem then can be formulated as an iden-
tification problem of finding the stiffness matrix which reproduces the measured
data, see, e.g., Hassiotis and Jeong (1993), and can be solved using advanced opti-
mization techniques.

Various formulations have been used by investigators in the past for the ad-
justment of the stiffness matrix to meet natural frequencies and mode shapes
observed in the experiment, see Baruch (1982), Kabe (1985) and Lapierre and
Ostiguy (1990). Sensitivity analysis techniques that make use of the sensitivities of
the eigenvalues and eigenvectors to the changes in the stiffness have also been used
to verify and upgrade the analytical model given measured frequencies and eigen-
modes. Cawley and Adams (1979) used the first order perturbation of the basic
eigenvalue equation to obtain sensitivities necessary to locate the damage in a
structure using natural frequencies. The location of the damage was assumed to be
where the theoretically determined ratio of changes in any two frequencies was
equal to the experimentally measured value. Hajela and Soeiro (1990a) presented a
more general approach based on the use of either static displacements or frequen-
cies and modes for damage detection. The damage was modelled on an element-
by-element basis as changes in sectional properties, which then contribute to varia-
tion in the elements of the structural stiffness matrix. The output error approach,
where changes are made in numerical model to match the experimental response,
and the equation error approach where the model parameters are adjusted to obtain
a match between the left and right hand sides of the response equation, have been
used to detect a simulated damage in a series of truss and semimonocoque struc-
tures (see Hajela and Soeiro, 1990b).

In this section the output error method of system identification is used to dem-
onstrate the assessment of the presence of damage in steel frame structures. The
approach is based on the use of measurements of natural frequencies only because
information on shape modes is not easily obtainable with sufficient accuracy. The
results obtained using a derivative-based optimization technique are compared to
those obtained using a genetic algorithm.

3.1 Identification problem formulation

In a finite element formulation characteristics of the structure are defined in terms
of the stiffness and mass matrices K and M, respectively. Any variations in these
matrices, e.g. introduced by damage, would affect the dynamic response character-
istics of the structure. The analytical model describing the eigenvalue problem for
an undamped system can be stated in terms of the matrices K and M, the i-th ei-
genvalue 2

i> , and the corresponding eigenmode ?i as follows:

www.manaraa.com

Applications of GA and GP 143

(K � 2
i> M) ?I = 0 (3)

Matrices K and M are to be adjusted to minimize the differences between the
experimentally observed eigenvalues and values obtained from the analytical (e.g.,
finite element) model. As a variation in the system matrices results in changed
frequency response, the damage assessment problem, formulated as an inverse
problem, is to relate these differences to changes in specific elements of the system
matrices. In order to describe the influence of the presence and extent of damage
on the matrices K and M, the optimization variables x are to be introduced such as
sectional properties of individual structural elements (the cross-sectional area,
moments of inertia) or material parameters (Young's modulus, etc.). These depend-
encies may be stated in a functional form: K = K (x), M = M (x).

Two basic approaches can be suggested for the description of the presence, lo-
cation and the extent of structural damage by optimization variables x. In the first
one, an individual variable xi can describe the extent of possible damage at i-th
location, e.g. in the i-th finite element. This formulation leads to a continuous op-
timization problem, can easily describe the presence of multiple damage but the
number of variables can be large when a large scale finite element model is used.

Alternatively, the vector of optimization variables can be considered as a set of
L couples LL xxxxxx 21

2
2

2
1

1
2

1
1 ,,...,,,, where jx1 is a number of a damaged element in

the FE model and jx2 describes the extent of damage occurring in it, j = 1,..., L and
L is the assumed maximum number of damaged elements. Such approach leads to a
considerably smaller number of variables but presents a discrete or mixed discrete-
continuous optimization problem. In this section the use of both approaches is
presented.

Using the output error approach, the damage identification problem can be for-
mulated as the following optimization problem:

Find the optimization variables x by minimizing the differences between the fre-
quencies M

i> measured in the course of laboratory experiment or operation and
the frequencies)(xA

i> obtained by the Finite Element analysis:

minimize @ A2
)(xA

i
M
i >> � , i = 1,...,F (4)

where F is total number of modes of vibration used for the identification. The for-
mulated problem is a multicriterion one but it can be transformed to a more
conventional optimization problem by formulating a single criterion. A linear com-
bination of individual differences (4) is a most typically used one, the optimization
problem can then be reformulated in the following form:

@ AB C�
�

�
F M

i
A
i

M
ii

i
w

1
/)(minimize

2
>>> x (5)

www.manaraa.com

144 V.V. Toropov, L.F. Alvarez and O.M. Querin

where the weights iw describe the relative importance of the match between fre-
quencies of the i-th mode.

3.2 Experimental procedure

The test structure used for the investigation was a steel portal frame clamped at the
base of both columns as shown in Figure 8. All parts of the frame have the same
800 mm < 400 mm rectangular hollow section of 4 mm thickness. The first ten
natural frequencies were measured on the undamaged frame and also when three
stages of progressive damage (classified as mild, medium and severe) were applied
at the location close to the top joint. In all cases, the damage was applied by remov-
ing the material symmetrically relative to the beam’s neutral axis thus reducing the
cross section area to 64%, 54% and 35% of the original value for the undamaged
structure.

For the experimental data acquisition a standard technique of modal structural
testing has been used. Natural frequencies were measured by the impulse technique
because of its speed and ease of execution. The oscillations in the structure have
been excited with an instrumented hammer with a build-in force transducer Bruel
& Kjaer (B&K) type 8200. The acceleration of frame was measured by using a 14
g accelerometer (B&K type 4369) so the weight of that comparing to the weight of
the frame was negligible. The signals from hammer and accelerometer are ampli-
fied by B&K charge amplifiers type 2635 as schematically shown in Figure 8.

The excitation and response signals have been measured and processed using
the dual channel spectral analyser B&K type 2032. It transforms the two sampled
time functions into frequency spectra by a Fast Fourier Transformation (FFT) and
subsequently computes the ratio of these functions yielding the Frequency Re-
sponse Function (FRF). For example, two measured FRFs for the undamaged
frame (solid curve) and the damaged frame (dashed curve) are shown in Figure 9.
The difference between the natural frequencies for the damaged and the undam-
aged frame can easily be seen. As expected, the natural frequency for the damaged
structure is

www.manaraa.com

Applications of GA and GP 145

Figure 8. The portal frame and instrumentation set up: accelerometer (1), charge
amplifier (2), dual channel analyzer (3), instrumented hammer (4), PC (5), damage
position (6)

0 50 100 150 200 250 300 350 400
110

120

130

140

150

160

170

180

190

Frequency, Hz

Le
ve

l,
dB

Figure 9. Plot of frequency response functions for undamaged (solid curves) and
damaged frame (dashed curves)

lower than for the undamaged one. The adequate number of the accelerometer
positions along the perimeter of the frame has been established to ensure that no

www.manaraa.com

146 V.V. Toropov, L.F. Alvarez and O.M. Querin

resonance is overlooked. To obtain a sufficient resolution in low frequencies the
measurements have been repeated in several frequency spans (25, 50, 100, 200 and
400 Hz.). Some additional measurements were executed to detect and eliminate out
of plane mode shapes and frequencies. The results are shown in Table 1.

Table 1. Experimental and analytical values of natural frequencies

 Undamaged frame Damaged frame
Analytical (FEM) Experimental Experi-

ment Before
validation

After
validation

Mild
damage

Medium
damage

Mode
num-
ber Freq.,

Hz
Freq.,

Hz

Diffe-
rence,

%

Freq.,
Hz

Diffe-
rence,

%

Freq.,
Hz

Chan-
ge,
%

Freq.,
Hz

Chan-
ge,
%

 1 12.59 15.41 22.3 12.61 0.1 12.63 0.3 12.59 0.0

2 18.47 19.59 6.0 18.31 -0.8 18.34 -0.7 18.13 -1.9

3 44.13 45.34 2.7 43.65 -1.0 44.13 0.0 44.13 0.0

4 76.38 76.50 0.1 75.47 -1.1 74.38 -2.6 72.13 -5.6

5 128.5 135.0 5.0 128.1 -0.3 128.5 0.0 128.5 0.0

6 140.8 163.7 16.3 141.0 0.1 140.0 -0.5 139.0 -1.2

7 173.8 198.9 14.5 175.0 0.7 173.8 0.0 173.5 -0.1

8 223.5 237.0 6.0 225.2 0.7 220.0 -1.6 216.0 -3.4

9 306.5 313.7 2.3 308.4 0.6 306.0 -0.2 305.5 -0.3

10 361.0 367.3 1.7 364.7 1.0 354.0 -1.9 348.0 -3.6

A finite element model of 56 plane beam elements was used. It was found to
be very important to validate the model by minimizing the difference between the
experimental and analytical results. An optimization procedure was used to vali-
date the model using the experimental results on ten first natural frequencies for
the undamaged frame. Four parameters have then initially been considered as
optimization variables: the Young’s modulus and the density of the material, the
area of cross section, and the moment of inertia of small artificially introduced
elements at the base of both columns. Variation in the last parameter was intended
to cover the uncertainty of the boundary conditions (clamped columns) and had
the most profound effect on the validation. In addition, the effect in changes in the
FE mesh was studied and found to be insignificant. The results of the model vali-
dation are presented in Table 1

www.manaraa.com

Applications of GA and GP 147

3.3 Application of a derivative-based technique
The continuous optimization problem has been solved by the Sequential Quadratic
Programming (SQP) method combined with a genetic algorithm used to produce a
high quality starting guess.

First it was assumed that there was only one damage occurring at the one of the
joints, as these are more probable points in the structure to be damaged (see Ravaii
et al., 1998a). Then there are just five possible places for damage location and
because of the symmetry condition only three optimization variables were defined
in the optimization problem: one for the top joint, one next to the corner and one at
the base. Both the location and size of the damage were successfully detected. In
order to determine the number of modes necessary to reliably detect the damage,
the number of modes was incremented one by one. The results are presented in
Table 2.

Table 2. Damage detection and the number of modes used

(three possible locations)

Damage
location and

extent

Number of frequencies used for damage identification and corre-
sponding percentage of remaining area of cross-section found

Ty
pe

 o
f a

ct
ua

l
da

m
ag

e

Joint Area
(%) 1 2 3 4 5 6 7 8 9 10

1 100 81 105 105 105 105 105 103 90 89 95

2 64 77 99 99 67 67 66 66 63 63 59 M
ild

3 100 102 102 104 103 103 102 100 104 105 104

1 100 86 70 105 105 105 105 95 89 86 98

2 54 26 98 53 50 50 50 50 49 49 47

M
ed

iu
m

3 100 93 103 95 96 97 97 96 97 101 95

1 100 86 105 105 105 90 88 89 104 105 103

2 35 26 33 33 32 33 33 33 32 32 32

Se
ve

re

3 100 93 92 93 95 105 105 105 104 105 103

www.manaraa.com

148 V.V. Toropov, L.F. Alvarez and O.M. Querin

As could be expected, for a mild damage at least first four natural frequencies
were needed to detect the damage but for the medium and severe damage the first
three and two modes, respectively, were sufficient. Next, it was assumed that the
damage could happen at a greater number of possible locations (see Ravaii et al.,
1998b). Thus eight more possible locations were considered: five additional possi-
ble points of damage on a rafter and three other ones on a column and also three
points at the joints as in the previous formulation. There was no restriction on
the number of damaged elements applied, i.e. this could vary from zero (no damage
found) to 11 (damage at all possible locations). The first six natural frequencies
were used to detect the damage. The location and size of the damage were success-
fully detected again. The results are presented in Table 3.

Table 3. Damage detection using the first six natural frequencies

(eleven possible locations)

Damage location and extent

Ty
pe

 o
f

da
m

ag
e

FE.
No. 1 2 3 4 5 6 7 8 9 10 11

Ex
ac

t
ar

ea
 (%

)

100 64 100 100 100 100 100 100 100 100 100

M
ild

D
et

ec
te

d
 a

re
a

(%
)

105 65 105 105 93 101 105 105 105 98 101

Ex
ac

t a
re

a
(%

)

100 54 100 100 100 100 100 100 100 100 100

M
ed

iu
m

D
et

ec
te

d

ar
ea

 (%
)

105 50 100 105 96 105 105 105 105 95 101

Ex
ac

t
ar

ea
 (%

)

100 35 100 100 100 100 100 100 100 100 100

Se
ve

re

D
et

ec
te

d
 a

re
a

(%
)

100 32 102 105 96 98 105 105 105 93 95

www.manaraa.com

Applications of GA and GP 149

3.4 Application of a genetic algorithm

A genetic algorithm has been applied to the damage recognition problems in both
continuous and discrete-continuous formulations.

First, in order to compare the performance of the GA with that of SQP, a GA
has been applied to the continuous optimization problem. The cross-sectional
areas of eight elements of the FE model were considered as optimization vari-
ables. Lower and upper bounds of these cross-sectional areas were taken as 1
and 128 respectively, where 100 (or near) represents an undamaged element. The
discretization of design variables was defined by increments by one thus resulting
in the overall string length of 56 for all of the eight design variables. The following
parameters of the genetic algorithm have been used: size of the population 60,
proportion of the elite of 0.4, the probabilities of crossover and mutation have been
taken as 0.6 and 0.01 respectively. The computations were carried out for three,
five and eight possible damaged locations and in all cases the damage was success-
fully detected. The results for damage detection with eight possible damage points
(eight optimization variables) are shown in Table 4.

Table 4. Damage detection using GA (eight possible locations)

Damage location and extent
Element No. 1 2 3 4 5 6 7 8

Exact area (%) 100 64 100 100 100 100 100 100
Detected area 86 68 96 100 84 95 89 104

Next, a GA has been applied to the discrete-continuous optimization problem

(second formulation). In a discrete-continuous optimization problem, as described
above, the vector of variables is presented as a set of L couples
x x x x x xL L

1
1

2
1

1
2

2
2

1 2, , , ,..., , where L is the assumed maximum number of dam
aged elements. In each couple x j

1 is a number of a damaged element describing the
location of damage (a discrete variable) and x j

2 was accepted as a number be-
tween 1 and 128 describing the extent of damage occurring at a corresponding j-
th location (a continuous but discretized variable). Such approach leads to a con-
siderably smaller number of optimization variables, so the number of possible
damage locations can be easily increased, and this is the most important benefit of
this approach (see Ravaii et al., 1998b).

To demonstrate the potential of this approach, this method has been applied to
damage detection in the frame for the mild type of damage which results in small
changes in natural frequencies. The number of possible damage points was as-
sumed to be first 15 and, in the second attempt, 31 and, accordingly, the upper
bounds of the variables x j

1 were taken as 16 and 32, respectively. The lower
bounds of these variables were taken as 1. The lower and upper bounds of cross-

www.manaraa.com

150 V.V. Toropov, L.F. Alvarez and O.M. Querin

sectional areas, x j
2 , were taken as 1 and 128 respectively. The assumed maximum

number of damaged elements, L, was assumed to be one, two and three in three
successive damage detection trials. In all cases the damage was successfully de-
tected, the results are shown in Tables 5 and 6.

Table 5. Damage detection using GA (15 possible locations)

 Damage location and extent

Element No. 1 2 3 4 5 6 7-15

Exact area (%) 100 64 100 100 100 100 100

L=1 100 67 100 100 100 100 100

L=2 100 67 100 100 100 100 100

Assumed max.
number of dam-
age locations (L)

L=3 100 64 98 100 103 100 100

Table 6. Damage detection using GA (31 possible damage locations)

 Damage location and extent

Element No. 1 2 3 4-8 9 10 11 12-14 15 16-31

Exact area (%) 100 64 100 100 100 100 100 100 100 100

L=1 100 67 100 100 100 100 100 100 100 100

L=2 58 100 100 100 103 100 100 100 100 100

Assumed
max. no.
of dam-
age loc.

(L) L=3 63 100 100 100 100 100 104 100 97 100

www.manaraa.com

Applications of GA and GP 151

4 The Use of Permutation GA for the Development of
Uniform Designs of Experiments

4.1 Introduction

Response surface modeling (see Myers and Montgomery, 1976), also referred to
as metamodelling, is a method for approximating system’s responses using func-
tion values at certain points in the design variable space. It is often used in
design optimization for two main reasons: (i) to minimize the number of
response evaluations, and (ii) to reduce the effect of numerical noise.

The choice of location of the evaluation points or plan points is important in
getting a good approximation of the response, especially when evaluations are
expensive. The methodologies used for formulating the plan points are collectively
known as Design of Experiments (DOE). The most popular methods described by
Myers and Montgomery (1976) and Box and Draper (1987) are mostly based upon
the features of the mathematical model of the process, e.g. polynomial type. An-
other method is the Latin Hypercube sampling method (LH), proposed by McKay
et al. (1979) and Iman and Conover (1980), which is independent of the mathe-
matical model of a problem.

The LH DOE is structured so that each variable is divided into P levels. For
each level, there is only one point (i.e. experiment). Once the DoE for N variables
and P levels is formulated, re-calculation of the DOE is not required. Figure 10
shows the DoE for N=3 and P=4. The matrix is scaled to fit any range of the design
variables. Therefore a LH DOE for a problem with N=3 and P=4 is generally de-
termined by this matrix.

Figure 10. LH DoE for N=3 and P=4

Two LH methods are the random sampling LH method (RLH) and the optimal

Latin Hypercube designs (OLH). RLH and OLH differ by how the points in the
DOE are distributed. The RLH method uses random sampling to get each point in
the DOE, whereas the OLH methods use more structured approaches with the aim

Point 1x

2x

3x

1 1 1 4

2 2 3 1

3 4 4 2
4 3 2 3

www.manaraa.com

152 V.V. Toropov, L.F. Alvarez and O.M. Querin

of optimizing the uniformity of the distribution of the points. The generation of the
OLH DOE by enumeration is infeasible due to a very large number of possible
combinations and therefore solving this minimization problem requires a more
advanced optimization technique to search the design space.

4.2 Optimal Latin hypercube design of experiments

Several methods have been proposed to generate OLH using criteria such as
maximizing entropy (Shewry and Wynn, 1987), integrated mean-squared error
(Sacks et al., 1989), and the maximization of the minimum distance between
points (Johnson et al., 1990). Jin et al. (2003) introduce an enhanced stochastic
evolutionary algorithm for formulating OLH. Audze and Eglais (1977) proposed
a method (abbreviated here as AELH) that uses the potential energy of the points
in the DOE to generate a uniform distribution of points. The AELH objective
function is used in this section.

Audze-Eglais objective function
The Audze-Eglais method is based on the following physical analogy: a system
consisting of points of unit mass exert repulsive forces on each other so that the
system has a certain amount of potential energy. When the points are released
from an initial state, they move. They will reach equilibrium when the potential
energy of the repulsive forces between the masses is at a minimum. If the magni-
tude of the repulsive forces is inversely proportional to the distance squared
between the points then minimizing the function

min1
1 1 2 =� �

� ��

P

p

P

pq pqL
 (6)

will produce a system of points distributed as uniformly as possible. Here U is
the potential energy and Lpq is the distance between the points p and q (p � q).
For two design variables (N=2) and three points (P=3) the design of experiments
shown in Figure 11 is one possible solution to the OLH DOE. The quality of the
solution is calculated using the objective function in (6).

www.manaraa.com

Applications of GA and GP 153

Figure 11. DOE for N=2 and P=3

Various DOE combinations can be evaluated and the DOE that minimizes the

objective function is the OLH DOE. As the problem is discrete, it is ideally suited
to the use of discrete optimization techniques such as genetic algorithms.

Encoding for use in a genetic algorithm
Optimization requires the design variables of the problem to be encoded. The
design variables for this problem are the points of the DOE, so encoding of these
points into a form understood by the optimizer is required.

The approach used here encodes the co-ordinates of each point. The first P de-
sign variables being the x1 co-ordinates, the next P design variables being the x2 co-
ordinates etc. up to N variables. So the encoding or ‘permuation’ of Figure 11, i.e.
(1,3) (2,1) (3,2) becomes

1 2 3 3 1 2

x1 x2
The use of a standard binary genetic algorithm requires the encoding to be binary,
e.g.

1 2 3 3 1 2

01 10 11 11 01 10

x1 x2

if a standard genetic operator is applied, such as a mutation to the first point, this
becomes:

www.manaraa.com

154 V.V. Toropov, L.F. Alvarez and O.M. Querin

11 10 11 11 01 10 .

It can be seen that the mutation results in a contravention of the LH rule of one
point in each level, therefore penalization of the solution is required to guide the
binary GA towards feasible designs. A penalization approach is highly undesirable
for a GA and is very inefficient (Bates et al. 2004). One approach to ensure that no
members of a population need to be penalized is to use a permutation GA
(permGA), see Michalewicz (1992). This approach has been introduced by Bates et
al. (2004) and Toropov et al. (2007) and is described here together with some fur-
ther recent developments and extensions. This section is split into three sub-
sections corresponding to the following developments:

; A method using a permutation genetic algorithm (Michalewicz, 1992) for
generating a standard OLH (permGA) is presented and is adapted from
Bates et al. (2004).

; This is then extended to allow for existing fixed points to be incorporated
into the OLH.

; A strategy is described for the treatment of problems where different design
variables are associated with different numbers of levels which is not cov-
ered by the standard definition of a Latin hypercube design.

4.3 Optimal Latin Hypercube Generation Using a Permutation Genetic
Algorithm

The requirement of one point in each level for OLH is similar to the travelling
salesman problem (TSP). The only difference between the TSP and the
formulation of the LH is that in the LH problem the ‘salesman’ doesn’t return to
the starting point. An extensive overview of many approaches to solving the TSP
problem is given by Michalewicz (1992). One method is to use a GA to find the
optimal ‘permutation’ of cities where the term permutation, is “the
rearrangement of existent elements, or the process of changing the lineal order of
an ordered set of objects” (Merriam-Webster online dictionary).

Using permGA the encoding is done with integer values instead of binary
numbers. Furthermore, the mutation and crossover operators are modelled such
that the rule of one point in each level for the LH is never contravened. This means
that the optimization problem is unconstrained and no penalty factor is required.
Therefore, using a method such as permGA is more efficient due to the fact that it
does not have to deal with infeasible solutions.

www.manaraa.com

Applications of GA and GP 155

Encoding
Using the permGA the encoding requires no conversion so that the string repre-
senting the DOE in Figure 12 is 1 2 3 3 1 2. The formulation here is that the
first P numbers are a random sequence of numbers between 1 and P, and the
next P numbers are also a random sequence of numbers between 1 and P. This is
repeated up to N times. There are no repetitions of numbers in each sequence
therefore the rule of one point in each level is not contravened. Below is an ex-
ample of using the genetic operators with a permutation encoding.

1) Mutation - two numbers are selected and exchanged, e.g. 2nd and 5th

[4 1 5 2 3] D [4 3 5 2 1]

2) Crossover can be done in a variety of ways. It is applied to each sequence of

P numbers for the N variables. Three crossover methods have been imple-
mented in this work: a ‘simple crossover’ method, the ‘cycle crossover’
method by Oliver et al. (1987), and an ‘inversion’ method.

Simple crossover
A crossover point is selected (2 in this example), the permutation is copied from
the first parent until the crossover point, then, starting from the beginning, the
other parent is scanned and if the number is not yet in the child, it is added.

Parent 1 = [4 1 3 5 2] D Child 1 = [4 1 5 2 3]
+

Parent 2 = [5 2 1 4 3] D Child 2 = [5 2 4 1 3]

Cycle crossover
In this method, each value and its position comes from one of the parents. The
method preserves the absolute position of the elements in the parent sequence.
An example of the implementation of cycle crossover is as follows (adapted
from Michalewicz, 1992).

Parent 1 = [1 3 9 7 5 4 6 2 8]
+

Parent 2 = [4 6 2 1 7 8 9 3 5]

produces child 1 by taking the first value from the first parent:

Child 1 = [1 * * * * * * * *].

www.manaraa.com

156 V.V. Toropov, L.F. Alvarez and O.M. Querin

The next point is the value below 1 in parent 2, i.e. 4. In parent 1 this value is at
position ‘6’, thus

Child 1 = [1 * * * * 4 * * *].

This, in turn, implies a value of 8, as the value from parent 2 below the selected
value 4. Thus

Child 1 = [1 * * * * 4 * * 8].

Following this rule, the next values in child 1 are 5 and 7. The selection of 7 re-
quires the selection of 1 in parent 1, which is already used, meaning that a cycle is
completed

Child 1 = [1 * * 7 5 4 * * 8].

The remaining values are filled from the other parent:

Child 1 = [1 6 2 7 5 4 9 3 8].

Similarly,

Child 2 = [4 3 9 1 7 8 6 2 5].

Inversion

In this method two cut-off points are chosen at random in a parent and the values
between these points are inverted e.g. for the cut-off points 3 and 7 marked as ‘|’

Parent 1 = [1 3 9 | 7 5 4 6 | 2 8]
E

Child 1 = [1 3 9 | 6 4 5 7 | 2 8]
.

Other crossover methods include ‘partially mapped crossover’ by Goldberg
and Lingle (1985) and ‘order crossover’ by Davis (1985), also see Michalewicz
(1992) for further details.

In addition to using the objective function (6) to assess the fitness of a solu-
tion it is useful to find for each sample point in a DOE the location of its nearest
neighbour by calculating the minimum Euclidian distance out of all DOE points.
Plotting the distribution of the “minimum distances”, a smaller standard devia-

www.manaraa.com

Applications of GA and GP 157

tion demonstrates improved uniformity and a higher mean indicates improved
space filling propertiy.

Figure 12 compares a random LH to an OLH for 2 design variables and 120
points generated using permGA.

(a) Points distribution (a) Minimum distance plot

(b) Points distribution (b) Minimum distance plot

Figure 12. Comparison of (a) random LH to (b) OLH for 2 design variables
and 120 points generated using permGA

4.4 Optimal Latin hypercube design with existing fixed points

One of the shortcomings of LH DOEs is that it is not possible to have points at
all the extremities (corner points) of the design space due to the rule of one point

www.manaraa.com

158 V.V. Toropov, L.F. Alvarez and O.M. Querin

per level. This is often desirable in practical design optimization problems.
Furthermore, it may be the case that points in the design space are pre-
designated. With this in mind the standard OLH procedure described in Section
4.2 has been extended to allow existing fixed points to form part of the final
DOE. This has been implemented by allowing the fixed points to contribute to
the objective function of the optimization without forming part of the design
variable set. This enables fixed points to be located anywhere in the design
domain without affecting the fundamental principle of the designable Latin
hypercube i.e. one point per level per design variable.

Figure 13 compares a random LH to an OLH for 2 design variables, 4 fixed
(corner) points and 120 points generated by the permGA. Similarly, Figure 14
compares a random LH to a OLH for 2 design variables, 11 fixed (diagonal)
points and 120 points generated by the permGA.

4.5 Optimal Latin hypercube design with different numbers of levels

Another shortcoming of LH DOEs is that it is not possible to have different
numbers of levels in different design variables. In many practical problems
design variables are defined on discrete sets which do not necessarily contain the
same number of possible values for each of the individual variables. In such a
case, a conventional Latin hypercube is not applicable as some levels in some of
the design variables would have more than one point. With this in mind the OLH
procedure described in Section 1 has been extended to allow individual levels to
contain more than one point while preserving the uniformity property according
to the Audze-Eglais optimality criterion.

In order to do this within the adopted framework, a set of possible levels in
each of design variables has to be defined. The total number of such possibilities
has to be the same for each of the design variables but some of the levels can be
repeated more than once. For example, for a two design variable problem with 9
points, 9 levels in the first variable and 3 levels in the second, the sets are: {1, 2,
3, 4, 5, 6, 7 8, 9} in the variable one and {1, 1, 1, 2, 2, 2, 3, 3, 3} in the variable
two. Then the procedure described in Section 4.3 can be directly applied for such
a problem. Figure 15 shows a generalised OLH design obtained by a permGA.

Another example is a generalised OLH with two design variables, 30
points, 30 levels in the first variable and 20 levels in the second. The set of
levels for the first design variable includes integers from 1 to 30, and for second
it was chosen as {1, 2, 3, 4, 5, 6, 7 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
2, 4, 6, 8, 10,

www.manaraa.com

Applications of GA and GP 159

(a) Points distribution (a) Minimum distance plot

(b) Points distribution (b) Minimum distance plot

Figure 13. Comparison of (a) random LH to (b) generalised OLH for 2 design

variables, 4 fixed (corner) points and 120 points generated by the permGA

12, 14, 16, 18, 20}. Figure 16 shows a corresponding generalised OLH design
obtained by a permGA. These example indicate how a sets of levels is estab-
lished for each of the design variables: the full set of available levels is repeated
as many times as possible not exceeding the given number of DOE points, and
then the remaining levels are chosen by picking up a necessary number of levels
(the total number of all levels is to remain equal to the number of DOE points)
out of the available set covering it as uniformly as possible.

www.manaraa.com

160 V.V. Toropov, L.F. Alvarez and O.M. Querin

(a) points distribution (a) Minimum distance plot

(b) points distribution (b) Minimum distance plot

Figure 14. Comparison of (a) random LH to (b) generalised OLH for 2 design
variables, 11 fixed (diagonal) points and 120 points generated by the permGA

www.manaraa.com

Applications of GA and GP 161

Points distribution Minimum distance plot

Figure 15. Generalised OLH for 2 design variables, 9 levels in the first and 3

levels in the second design variable

Points distribution Minimum distance plot

Figure 16. Generalised OLH for 2 design variables, 30 levels in the first and 20
levels in the second design variable

4.6 Conclusions

A method has been developed for formulating the OLH DOE using the Audze-
Eglais objective function. The formulation of this DOE is shown to be non-
trivial. It has been shown, that the formulation of OLHs is ideally suited to using

www.manaraa.com

162 V.V. Toropov, L.F. Alvarez and O.M. Querin

permutation GAs since the problem uses discrete design variables and the LH
requires no repetition of values in a chromosome.

One of the shortcomings of LH DOEs is that it is not possible to have points
at all the extremities (corner points) of the design space due to the rule of one
point per level. Furthermore, it may be the case that points in the design space
are pre-designated. The permutation GA developed has been extended to ac-
count for such situations. Next, a strategy is developed for the treatment of
problems where different design variables are associated with different numbers
of levels. This addresses a limitation of the standard convention of a Latin hy-
percube design whilst preserving the uniformity property.

Overall, it can be concluded, that the permutation GA is an effective tool for
developing OLH DOE and that the extensions described considerably increase
the functionality of the tool.

5 Use of Genetic Programming Methodology for Metamodel
Building

Selection of the structure of an analytical metamodel, i.e. an approximation func-
tion, is a problem of empirical model building (Box and Draper, 1987). Selection
of individual regression components in a model results in solving a combinato-
rial optimization problem. Even if the bank of all regressors is established
(which is a difficult problem on its own), the search through all possible combi-
nations would result in prohibitive computational effort. Toropov and Alvarez
(1998) attempted to develop and use a genetic programming (GP) methodology
(Koza, 1992, Kinnear, 1994) for the creation of an approximation function struc-
ture of the best possible quality, and use it within a mid-range (or global)
approximation technique.

GP is a branch of genetic algorithms (GA). While a GA uses a string of
numbers to represent the solution, the GP creates a population of computer pro-
grams with a tree structure. In our case of design optimization, a program
represents an empirical model to be used for approximation of a response func-
tion. A typical program, representing the expression (x1/x2+x3)2, is shown in
Figure 17.

These randomly generated programs are general and hierarchical, varying in
size and shape. GP's main goal is to solve a problem by searching highly fit
computer programs in the space of all possible programs that solve the problem.
This aspect is the key to finding near global solutions by keeping many solutions
that may potentially be close to minima (local or global). The creation of the
initial population is a blind random search of the space defined by the problem.
In contrast to a GA, the output of the GP is a program (i.e. an empirical model
used for approximation), whereas the output of a GA is a quantity.

www.manaraa.com

Applications of GA and GP 163

SQ

+

/

Binary Nodes

Unary Node

Terminal Nodes

x 1 x 2

x 3

Figure 17. Typical tree structure for
2

3
2

1
��
�

�
��
�

�
� x

x
x

The programs are composed of elements from a terminal set and a functional
set, called nodes.

Terminal Set Design variables: x1 , x2 , ..., xN

Functional Set
Mathematical operators that generate the

regression model:
{ +, *, /, x y, etc. }

The functional set can be subdivided into binary nodes, which take any two

arguments (like addition), and unary nodes, which take one argument, e.g. a
square root. All the functions and terminals must be compatible in order to fault-
lessly pass information between each other (closure property).

The evolution of the programs is performed through the action of the genetic
operators and the evaluation of the fitness function.

5.1 Genetic operators

Model structures evolve through the action of three basic genetic operators:
reproduction, crossover and mutation. In the reproduction stage, a strategy must
be adopted as to which programs should die. In this implementation, trees with

www.manaraa.com

164 V.V. Toropov, L.F. Alvarez and O.M. Querin

fitness below the average are killed. The population is then filled with the sur-
viving trees according to fitness proportionate selection.

Crossover (Figure 18) combines good information from two trees (parents)
in order to improve the fitness of the next generation. The basic algorithm is as
follows:

� select two trees from the whole population;
� within each of these trees, randomly select one node;
� swap the subtrees under the selected nodes, thus generating two offsprings

belonging to the new population.

+

* /

SQ SQx1

x2

x2

x1

SQ

+

SQ x2

x1

+

*

SQx1

x2

SQ

x1

SQ

+

x2/

SQx2

x1

PARENT 1 PARENT 2

OFFSPRING 1 OFFSPRING 2

Figure 18. Crossover

www.manaraa.com

Applications of GA and GP 165

Mutation (Figure 19) protects the model against premature convergence and
improves the non-local properties of the search. The following algorithm is
used:

� randomly select one node within a tree;
� replace this node with another one from the same set (a function replaces

a function and a terminal replaces a terminal) except by itself.

SQ

-

SQ

SQ

*
- */+{ }

SQ

x1 x1

x2 x2

Figure 19. Mutation

An additional operator, elite transfer, is used to allow a relatively small num-
ber of the fittest programs, called the elite, to be transferred unchanged to a next
generation, in order to keep the best solutions found so far. As a result, a new
population of trees of the same size as the original one is created, but it has a
higher average fitness value.

5.2 Fitness function

When selecting randomly a tree to perform any genetic operation, the so-called
fitness proportionate method is used here. This method specifies the probability
of selection on the basis of the fitness of the solution.

The fitness of a solution shall reflect (i) the quality of approximation of the
experimental data by a current expression represented by a tree, and (ii) the
length of the tree in order to obtain more compact expressions.

In problems of empirical model building, the most obvious choice for the es-
timation of the quality of the model is the sum of squares of the difference
between the analytical model output (that is being built) and the results of runs
of the original simulation model (or experimental information) over some chosen

www.manaraa.com

166 V.V. Toropov, L.F. Alvarez and O.M. Querin

design of experiments (DOE). In a dimensionless form this measure of quality of
the solution can be presented as follows:

 � �
� �

�

�

�

�
�

� P

p
p

P

p
pp

i

F

FF
SQ

1

2

1

2~

. (7)

If in addition to the values of the original function Fp their first order deriva-

tives at point p � � � �PpNiF
x

F p
i

p i
,...,1,...,1,

,
��

F
F

� are known, the

numerator in (7) is replaced by the following expression:

 � �
� �

�
�

�

�

�

�

��
�
�
�

�

�

��
�
�
�

�

�
�

��
P

p
N

i
p

N

i
ipp

pp

i

i

F

FF
FF

1

1

2

1

2

,2

,

,

~
~ G (8)

where G >0 is the parameter characterizing a degree of inequality of the contribu-
tion of the response and the sensitivity data, taken here as 0.5.

If � �iSQ is the measure of quality of the solution Si, maxQ is the maximum
value of this quantity out of all Nt members of the population, ntpmax is the
maximum allowed number of tuning parameters, ntpi is the number of tuning
parameters contained in the solution Si and c is a coefficient penalizing the ex-
cessive length of the expression, the fitness function � �iS1 can be expressed in
the following form:

 � � � � � �2
maxmax * iii ntpntpcSQQS ����1 (9)

The probability that the solution Si will be selected is

 � �
� ��

�
1

1
N

j
j

i

S

S

1

. (10)

Programs with greater fitness values � �iS1 have a greater chance of being
selected in a subsequent genetic action. Highly fit programs live and reproduce,
and less fit programs die.

www.manaraa.com

Applications of GA and GP 167

The fitness function defined as the sum of squares of the error between
model output and experimental data has been applied before to the model build-
ing in fluid flow problems (Gray et al., 1996a) and dynamic systems (Gray et al.,
1996b). Another possible choice is the statistical concept of correlation, which
determines and quantifies whether a relationship between two data sets exists.
This definition was used for the identification of industrial processes (McKay et
al. 1996).

5.3 Design of experiments
The choice of the design of experiments can have a large influence on the accu-
racy of the approximation and the cost of constructing the response surface. In
this work, the approach suggested by Audze and Eglais (1977), see Section 4 for
details.

5.4 Model tuning
The approximation function is characterized not only by its structure (to be
found by the GP) but also by a set of tuning parameters a to be found by the
model tuning, i.e. the least squares fitting of the model into the set of values of
the original response function:

 � � � �� � min~

1

2
=�� �

�

P

p
pp FFG aa (11)

The allocation of tuning parameters a to an individual tree (Figure 20) follows
the basic algebraic rules, see Figure 21.

SQ

+

/

x1 x2

x3

SQ

+

*

a1 /

+

a0

x1 x2

*

a2 x2

Figure 20. Allocation of tuning parameters to a tree

www.manaraa.com

168 V.V. Toropov, L.F. Alvarez and O.M. Querin

Check first node
in the subtree

UNARY NODE VARIABLE NODE BINARY NODE

Insert Tuning
Parameter Left Node Right Node

Any
operation different
from * and / in the

subtree ?

Insert Tuning
Parameter

Any
other node to be
checked in the

tree ?

START

STOP

Yes

No

Yes

No

Figure 21. Tuning parameter allocation diagram

Going through the tree downwards, tuning parameters are allocated to a
subtree depending on the type of the current node and the structure of the subtree
according to the following algorithm:

1. Current node is of type Binary
multiplication and division operations only require one tuning parameter,
e.g.

21121 **
~

*
~

xxaFxxF a

www.manaraa.com

Applications of GA and GP 169

all other operations require two tuning parameters, e.g.

221121

221121

^~^~
**~~

xaxaFxxF
xaxaFxxF

a
a

all other operations require two tuning parameters, e.g.

221121

221121

^~^~
**~~

xaxaFxxF
xaxaFxxF

a
a

all other operations require two tuning parameters, e.g.

221121

221121

^~^~
**~~

xaxaFxxF
xaxaFxxF

a
a

when F~ is a combination of the previous two approaches, tuning
parameters are only applied to operations different from multiplication
and division, e.g.

423211

4321

*/**
~

/*
~

xaxxaxF

xxxxF

a

432211

4321

*^**
~

*^
~

xxxaxaF

xxxxF

a

2. Current node is of type Unary: ignore.
3. Current node is of type Variable

one tuning parameter is added, e.g.

2
11

2
1 *

~~
xaFxF a

4. Insert a free parameter, e.g.

01111 *
~

*
~

axaaFxaaF

www.manaraa.com

170 V.V. Toropov, L.F. Alvarez and O.M. Querin

To identify the parameters of the expression by the nonlinear least squares
fitting, i.e. to solve the optimization problem (11), a combination of a Genetic
Algorithm and a nonlinear optimization method by Madsen and Hegelund
(1991) is used.

The output of the Genetic Algorithm is then used as the initial guess for the
subsequent derivative-based optimization. The method by Madsen and Hegelund
(1991) used here amounts to a variation of the Newton's method in which the
Hessian matrix is approximated by the secant (quasi-Newton) updating method.
Once the technique comes sufficiently close to a local solution, it normally con-
verges quite rapidly. To speed up the convergence the algorithm uses the
adaptive update of the Hessian and, consequently, the algorithm is reduced to
either a Gauss-Newton or Levenberg-Marquardt method.

5.5 Applications

Test example 1. Rosenbrock's banana-shaped valley function is a classic optimi-
zation problem. The optimum point is inside a long, curved and narrow valley. The
function is defined as follows:

 � � � � � �21
22

1221 1100, xxxxxF ���2�

Figure 22 shows the contour plot and the surface plot of Rosenbrock's function.

Figure 22. Rosenbrock's function: contour plot (left) and surface plot (right)

With a population of 200 trees, the approximation of Rosenbrock's function
has been tested with and without the use of sensitivity information. When no
sensitivity information has been used, GP was run with a DOE of 5 and 10

www.manaraa.com

Applications of GA and GP 171

points. In the case of 5 points, a solution with good fitness has evolved, it had
almost exact match at the plan points but very poor quality everywhere else. The
reason is that insufficient information was passed to GP to represent an accurate
solution, and the solution suffered from overfitting. When approximated with 10
plan points, the Rosenbrock's function emerged as the solution of the problem.

When the first order derivatives, were included in the approximation of Rosen-
brock's function with a DOE of 5 points, the algorithm exactly matched the original
expression. This suggests that, if available, derivatives provide with more informa-
tion thus improving the convergence characteristics. If the derivatives are not
available, the inclusion of more points in the plan of experiments is necessary.

Test example 2. Generally, a large number of DOE points is desirable in order to
provide more information to the genetic programming algorithm. To illustrate these
aspects, the following expression has been tested (see Figure 23):

)4)(sin30(211
xexx ���

Two tests were performed with data generated with a DOE of 20 and 10 points
(Figures 23 and 24 respectively). The sine and exponential functions were included
in the functional set. Results show that the higher is the number of experiments, the
better is the approximation.

Figure 23. The original function and
the approximation with 20 DOE

Figure 24. Approximation with
10 point DOE

www.manaraa.com

172 V.V. Toropov, L.F. Alvarez and O.M. Querin

6 Use of Genetic Programming for Recognition of Damage in
Steel Structures

In this section the output error method of system identification has been again used
to assess the presence and extent of damage in steel structures. In the solution of
the optimization problem the objective function and, alternatively, its individual
terms corresponding to individual frequencies, have been approximated by analyti-
cal expressions using the Genetic Programming methodology. Damage location in
a typical steel portal frame is found by minimization of the difference between the
measured and analysed structural response, namely, frequencies of vibration (5).

In the formulation of the optimization problem (5) the number of optimization
variables N = 3, the number of used frequencies M = 4, and x1, x2, x3 describe per-
centage of reduction of cross-sectional area in three locations at welded joints. The
description of actual damage corresponds to the following set of optimization vari-
ables: x1 = 100, x2 = 54, x3 = 100, i.e. damage in second location.

The approximation procedure using GP (see Section 5) has been carried out
following two different approaches (Toropov et al. 1999 a, b): approximation of
the objective function in the original optimization problem (5), and approximation
of the individual frequencies corresponding to the first four modes of vibration. In
the second approach, individual frequencies)(xa

i> , i = 1, …, M in (5) are ap-
proximated by simpler expressions)(~ xa

i> and the overall objective function (to
be minimized) � �xF~ can be assembled similarly to (5) using the approximated
frequencies:

@ AB C min

1
/)(~)(~ 2

=
�

�� �
M

m
i

a
i

m
ii

i
wF >>> xx . (12)

The advantage of the formulation (12) is that the approximations)(~ xa

i> can be
built once and then used many times for damage detection in a new structure of the
same geometry using new sets of the experimental data m

i> , i = 1, …, M.
For the 3-dimensional graphical representation, the approximation functions

have been plotted fixing one of the three optimization variables, corresponding to
possible damage locations, i.e. x1 = 100. Figure 26a shows the original function in
(5). Figures 26b and 26c show the approximation functions obtained using the
values of the function in (5) at P = 20 points of the optimization variable space.
The following input parameters have been used:

� designs of experiments: 20 and 50 points
� population size: Nt=100
� proportion of the elite: Pe=0.2
� probability of mutation: Pm=0.001
� functional set:
� binary functions +, *, /, ^

www.manaraa.com

Applications of GA and GP 173

� unary functions (...)2, H(...), -(...)
� terminal set: variables x1 , x2, x3.

(a) Original function (b) Approximation
(50 points)

(c) Approximation
 (20 points)

Figure 25. Approximation of the overall expression, x1 = 100

The solution of the simplified optimization problem (5) has been obtained in
two steps of approximation building. In the first step the following values of lower
and upper bounds have been selected: Aj = 10 and Bj =110, j =1, 2, 3. In the sec-
ond step the size of the search domain of the optimization variable space, defined
by Aj and Bj, has been reduced by half and the new approximations have been
constructed. When the approximation have been built using 50 points, the follow-
ing solution has been obtained: x1 = 110.0, x2 = 45.4, x3 = 110.0. Using 20 points,
the following solution has been obtained: x1 = 74.0, x2 = 50.7, x3 = 110.0.

When the approximation functions were obtained as a combination of ap-
proximations for the individual frequencies, as defined by the expression (12) and
illustrated by Figure 26, the following solutions have been obtained in one step: x1
= 92.6, x2 = 50.1, x3 = 110.0 using 50 points, and x1 = 80.0, x2 = 51.1, x3 = 89.6
using 20 points.

www.manaraa.com

174 V.V. Toropov, L.F. Alvarez and O.M. Querin

Approximation (50 points)

Approximation (20 points)

Figure 26. Expressions obtained using approximations of individual frequencies,
x1 = 100

7 Multicriteria Optimization of the Manufacturing Process

for Roman Cement using Genetic Programming

In the 19th century, Roman cement was used throughout Europe for the produc-
tion of stucco finishes in architectural decoration. However, problems with the
supply of raw materials and developments in Portland cements motivated the
decline in its use and the corresponding loss of craft techniques.

The Charter of Venice (1964) states that the process of restoration should be
based on respect for the original material. This is in contrast with the use of the
current modern cement products, finishing layers and paints that do not match
the original physical and mechanical properties of the stuccoes.

Consequently, for the re-introduction of Roman cement, there is a need to
find a suitable range of similar materials among the re-emerging natural hydrau-
lic binders, and to appreciate the technical knowledge and understanding of the
original cement-makers. Experimental results on the calcination of cement-
stones from the Harwich and Whitby group of cements show that both setting
time and strength development are functions of source and calcination tempera-
ture.

In this application, a single source of cement-stone was identified for ex-
perimentation within an optimization programme to relate mechanical and
mineralogical characteristics to calcination conditions. Genetic programming has
been used to illustrate the general trends of minerals and the strength develop-
ment of the cement. The data will be useful for the selection of hydraulic
binders and as an element in the re-introduction of Roman cement to the Euro-
pean market.

www.manaraa.com

Applications of GA and GP 175

Experimental work. The cement-stones used in this research were collected
from the Yorkshire coast at Whitby Long Bight. The calcination process is not
well documented in the historic literature. For the current research, the Audze-
Eglais 12 point DOE has been used. Each cement is referred to using the nomen-
clature of temperature and residence time, e.g. 917/276 taken as design variables
x1 and x2 respectively, see Figure 27. An electric kiln was used and no attempt
made to either circulate air through it or to seal it during calcination.

Figure 27. Design of experiments

Results presented here are adopted from Alvarez et al. (2000). At each com-
bination of time and temperature given by the plan of experiments, strength at
one week (MPa) and rate of strength enhancement between 8 and 17 weeks
(MPa/week) have been obtained by a series of laboratory experiments. Using
GP, these response quantities have been obtained as analytical expressions, their
contour plots are shown in Figure 28.

The multicriteria optimization problem is stated as to maximize the early
age strength and the rate of strength enhancement simultaneously. The con-
straints have been established following different technical aspects. Although
the green discolouration of some pastes is associated with the presence of a min-
eral called calcium sulfite, its concentration is too low to quantify. Consequently
this constraint has been represented by a maximum silica content (determined by
X-Ray Difraction using boehmite as an internal standard) expressed as relative
intensity

www.manaraa.com

176 V.V. Toropov, L.F. Alvarez and O.M. Querin

Figure 28. Strength development for Roman cement

50. This correlates with pastes which do not turn green. Another important
quantity, the weight loss on calcination (LOC) of 28-30% has been selected to
represent the confused historic statements of "calcine sufficient to decarbonate",
"just enough to minimize the weight" and "underfire to economize on
grounding" found in the literature, although not well documented. The analytical
approximations for these two constraints have also been obtained using the GP
methodology.

The formulation of the optimization problem is as follows:

Strength at one week
Rate of strength enhancement

max
max

Subject to: Silica 50
28% LOC 30%

To find the Pareto-optimal set, first the objective and constraint functions
have been plotted to identify the feasible solution domains. Second, a series of
optimization runs has been performed by the SQP algorithm at regular intervals.
The final solution is represented in Figure 29. The shaded area defines the
feasible solution domain, the curves indicate constant levels of strength at one
week, the rate of strength enhancement and the constraint functions at their
limiting levels. The circled points define the discrete approximation of the
Pareto-optimal set.

The analysis of the optimization results (Figure 29) reveals that there are
three main zones of study according to the obtained Pareto-optimal set: the
upper, middle and lower zones.

www.manaraa.com

Applications of GA and GP 177

Figure 29. Results of optimization

The lower zone has an essentially constant time band. As temperature in-
creases, the strength at one week decreases but the rate of strength enhancement
increases. The upper zone has a narrower temperature band than the lower zone.
Here as the temperature reduces, the times increases. As this progression is fol-
lowed, the same trend as before is noted in terms of the strength at 1 week and
the rate of strength enhacement. The middle zone is located in a very narrow
area of the feasible domain that suggests uncertainty about the validity of these
solutions.

It is possible to identify three points which yield similarly good performance
but obtained under different calcination conditions as described in Table 7. It
appears that as the calcination temperature is raised, then the residence time is
reduced. The final selection of any these calcination conditions will be heavily
influenced by energy and hence financial and ecological considerations.

www.manaraa.com

178 V.V. Toropov, L.F. Alvarez and O.M. Querin

Table 7. Optimal solutions

 Strength at
1 week
(MPa)

Rate of strength
enhancement
(MPa/week)

Temperature (�C) Time
(min)

1 4.4 1.0 957 120
2 4.3 1.0 920 205
3 4.2 1.1 900 260

8 Empirical Modelling of Shear Strength of Reinforced
 Deep Beams by Genetic Programming (Ashour et al. 2003)

8.1 Introduction

Reinforced concrete (RC) deep beams are characterised as being relatively short
and deep, having a thickness that is small relative to their span or depth, and
being primarily loaded in their own plane. They are sometimes used for load
distribution, for example as transfer girders, pile caps, folded plates and founda-
tion walls. The transition from reinforced concrete shallow beam behaviour to
that of deep beams is imprecise. For example, while the ACI code (ACI, 1999),
CEB-FIP model code (CEB-FIP, 1993) and CIRIA Guide 2 (CIRIA, 1977) use
the span/depth ratio limit to define RC deep beams, the Canadian code (CSA,
1994) employs the concept of shear span/depth ratio. ACI defines beams with
clear span to effective depth ratios less than 5 as deep beams, whereas CEB-FIP
model code treats simply supported and continuous beams of span/depth ratios
less than 2 and 2.5, respectively, as deep beams.

Several possible modes of failure of deep beams have been identified from
physical tests but due to their geometrical dimensions shear strength appears to
control their design. Despite of the large amount of research carried out over the
last century, there is no agreed rational procedure to predict the shear strength of
reinforced concrete deep beams (Kong, 1990; Regan, 1993). This is mainly
because of the very complex mechanism associated with the shear failure of
reinforced concrete beams.

The design of reinforced concrete deep beams has not yet been covered by
the British code of practice BS8110 (BSI, 1997) that explicitly states, "for the
design of deep beams, reference should be made to specialist literature". Com-
parisons between test results and predictions from other codes, such as ACI and
CIRIA Guide 2, show poor agreement (Tan et al., 1997; Teng et al., 1998).

In this section, the genetic programming (GP) method is used to build an
empirical model to estimate the shear strength of reinforced concrete deep beams

www.manaraa.com

Applications of GA and GP 179

subjected to two point loads (Ashour et al. 2003). The GP model will directly
evolve from a set of experimental results available in the literature. A parametric
study is conducted to examine the validity of the GP model predictions.

8.2 Parameters affecting shear strength of deep beams

Figure 31 shows the geometrical dimensions and reinforcement of a typical
reinforced concrete deep beam tested under two point loads. The main parame-
ters influencing the shear strength of reinforced concrete deep beams are the
concrete compressive strength, main longitudinal top and bottom steel rein-
forcement, horizontal and vertical web steel reinforcement, beam width and
depth, shear-span and beam-span (Ashour, 2000; Kong et al., 1970; Smith and
Vantsiotis, 1982). Those parameters can be expressed in normalised form as
follows:
; Normalised shear strength I� cfhbP� , where P = shear failure load, b

= beam width, h = overall beam depth, fc I = concrete compressive strength;
; Shear span to depth ratio hax /1 � ;
; Beam span to depth ratio hLx /2 � ;

; Smeared vertical web reinforcement ratio I� cvyvsv fsbfAx3 , where Asv
= area of vertical web reinforcement, sv = horizontal spacing of vertical web
reinforcement, fyv = yield stress of vertical web reinforcement;

; Smeared horizontal web reinforcement ratio I� chyhsh fsbfAx4 , where
Ash = area of horizontal web reinforcement, sh = vertical spacing of horizon-
tal web reinforcement, fyh = yield stress of horizontal web reinforcement;

; Main longitudinal bottom reinforcement ratio I� cybsb fhbfAx5 , where
Asb = area of main longitudinal bottom reinforcement, fyb = yield stress of
main longitudinal bottom reinforcement;

; Main longitudinal top reinforcement ratio I� cytst fhbfAx6 , where Ast =
area of main longitudinal top reinforcement, fyt = yield stress of main longi-
tudinal top reinforcement.

www.manaraa.com

180 V.V. Toropov, L.F. Alvarez and O.M. Querin

L / 2

h

Asv

Ash

Ast

Asb

a
C.L.

P

Figure 30. Geometrical dimensions of a reinforced concrete deep beam

Following normal practice established in the majority of papers published on
this topic (Mau and Hsu, 1987; Wang et al., 1993), the transformation of the
physical variables into dimensionless parameters allowed the reduction of the
initial set of 16 variables to only 6 dimensionless variables. A dimensionless
format is typically used in the codes of practice and can be easily understood by
design engineers. In addition, the dimensionless transformation of the initial
physical variables has not been done arbitrarily but follows design expertise of
structural engineers, i.e. x1=a/h could have been defined as x1=a/L but this
would not make sense to a design engineer; x3 and x4 define the smeared inten-
sity of vertical and horizontal web reinforcement. In applications where the
number of variables is small, the response function produced by GP could be
directly related to the physical variables, as suggested by Keijzer and Babovic
(1999, 2000) who developed a dimensionally aware GP.

The shear span to depth ratio x1 is one of the main parameters influencing
shear behaviour (Ashour, 2000; Manuel et al., 1971; Paiva and Siess, 1965;
Smith and Vantsiotis, 1982). A marked increase in the shear strength occurs in
reinforced concrete beams with reducing the shear span to depth ratio. The type
of web reinforcement affects the shear strength of reinforced concrete deep
beams (Kong et al., 1970; Rogowsky et al., 1986). Most codes of practice pro-
vide formulae to calculate the shear strength in which the contribution of the
horizontal web reinforcement is higher than that of the vertical web reinforce-
ment. Leonhardt and Walther (1970) suggested that the shear strength of deep
beams cannot be improved by the addition of web reinforcement. However,
Kong et al. (1970) suggested that improvement is possible to a limited extend.

www.manaraa.com

Applications of GA and GP 181

Rogowsky et al. (1986) concluded that horizontal web reinforcement had no
effect on the shear strength while the vertical web reinforcement had a signifi-
cant influence. As explained above, there is strong disagreement on the influence
of web reinforcement on the shear strength of deep beams, in particular the rela-
tive effectiveness of vertical and horizontal reinforcement. Although most test
results of reinforced concrete deep beams suggest that the span to depth ratio x2
has very little influence on shear strength (Mau and Hsu, 1987; Subedi, 1988;
Wang et al., 1993), most codes of practice use this parameter to define deep
beams. In this section, the span to depth ratio will be represented in the GP
model as one variable and its effect on the shear strength will be studied. Using
the current technique, it will be possible to study the effect of all parameters on
the ultimate shear strength of deep beams using all test results available in the
literature at the same time; this may eliminate the inconsistency and conflicting
conclusions drawn by different researchers.

8.3 Empirical model obtained by GP

There is a large number of test results of reinforced concrete deep beams re-
ferred to in the literature. Test results of 141 deep beams reported in (Kong et
al., 1970; Kong et al., 1972; Manuel et al., 1971; Paiva and Siess, 1965; Rama-
krishnan and Ananthanarayana, 1968; Rogowsky et al., 1986; Smith and
Vantsiotis, 1982; Subedi et al., 1986; Suter and Manuel, 1971; Tan and Lu,
1999) are used here to create the GP response. The training data set covers a
wide range of each parameter as given in Table 8. All selected beams were tested
under two point loads; other load arrangements have been excluded.

Table 8. Range of normalised function and parameters of the training data set

 Minimum Maximum
x1 0.28 2.0
x2 0.9 4.14
x3 0.0 0.32
x4 0.0 0.21
x5 0.023 0.445
x6 0.0 0.128

�(x) 0.029 0.308

The mathematical operators addition, multiplication, division, square and ne-

gation and a population size of 500 individuals were selected in the initial runs.

www.manaraa.com

182 V.V. Toropov, L.F. Alvarez and O.M. Querin

For simplicity of the GP-evolved expression, the power of variables was re-
stricted to positive integer values.

From the beginning, it was observed that the variable x2 (beam span to depth
ratio) had small influence on the shear strength � and, on one occasion, GP did
not include this variable in the evolved expression.

To confirm this observation, several GP runs were undertaken with the fit-
ness function given in equation (7) replaced by the statistical concept of
correlation (McKay et al., 1996) as defined in equation (13) below:

� �

� �
1)(0,

~~

~~

)(

1

2

1

2

1 ��

��
�
��

�
� �

��
�
��

�
� �

�

��

�

��

�
iP

p
p

P

p
p

P

p
pp

i SQ

FFFF

FFFF
SQ (13)

where, for a given tree, F~ is the mean of GP predicted function values over the P
points in the experimental data, and, similarly, F is the mean of the experimen-
tal shear strength values over all experimental data. The fitness function given in
(13) determines and quantifies the correlation between the independent variables
(x1, x2, x3, x4, x5, x6) and the dependant variable �. The closer the fitness value to
1, the stronger the correlation. In all GP runs, the fitness value Q(Si) in (13) was
close to 1 when variable x2 was not included in the final GP expression. The
small relevance of x2 on the shear strength has also been experimentally ob-
served by other researchers (Ashour, 2000; Kong et al., 1972; Subedi, 1988; Tan
et al., 1997; Wang et al., 1993).

In the next stage, only variables x1, x3, x4, x5 and x6 were used. Several runs
were performed and the solutions analysed on the basis of the simplest generated
model that conformed as closely as possible to the engineering understanding of
the failure mechanism. When the population size was increased to 1000 indi-
viduals and the mutation rate set to 0.001, the following model emerged:

� = x5 * (4.31 + 0.15 * x1
2 + 12.11 * x1 * x5 + 3.34 * x1 * x6 + 0.66 * x3 +

0.47 * x4 + 23.27 * x5
2 - 16.97 * x1 * x5

2 - 18.22 * x5 - 2.70 * x1)
(14)

Solutions with better fitness than (14) were produced, but they were rejected
because of their excessive length. Simplicity is a requirement and, as the complex-
ity of the model increases, its ability to generalise can be affected by the risk of
overfitting the data.

The structure of expression (14) was found acceptable, but the coefficients
needed to be adjusted in order to satisfy some constraints derived from the engi-

www.manaraa.com

Applications of GA and GP 183

neering knowledge of the problem, such as that the shear strength should be posi-
tive for the range of shear span to depth ratio studied. A Sequential Quadratic
Programming (SQP) algorithm (Madsen and Tingleff, 1990) was applied to im-
prove the coefficients of equation (15) resulting in the following expression:

� = x5 * (3.50 + 0.20 * x1
2 + 3.3 * x1 * x5 + 3.37 * x1 * x6 + 0.63 * x3 + 0.71

* x4 + 9.8 * x5
2 – 1.66 * x1 * x5

2 – 10.67 * x5 – 1.76 * x1)
(15)

Further studies with GP and manual postprocessing to adjust the coefficients
produced by the SQP algorithm have suggested a simplified final expression as
follows:

 � = A * x5
2 + B * x5 + C

where A = -4.56 + 1.68 * x1

 B = 2.45 + 0.1 * x1
2 - 1.16 * x1 + 3.12 * x6

 C = 0.3 * x3 + 0.3 * x4

(16)

It appeared that the variables x1 (shear span to depth ratio) and x5 (main longi-
tudinal bottom reinforcement ratio) were the most significant parameters.
Alternative expressions with an additional term x1*x6*x5 were found, but no rela-
tionship between these variables is available as a criterion for the choice between
different acceptable expressions. In the literature there is no consensus about the
effect of the main longitudinal top reinforcement (represented by x6 in the above
expression) on the shear strength; this requires further investigation and, following
that, better understanding of its effect can be reflected in the GP prediction. The
web reinforcement contribution (represented by x3 and x4) as given by expression
(16) is very small.

Expression (16) gives a root mean square (RMS) error over the training data of
0.033. The average ratio between the predicted and experimental shear strength is
1.008, and the standard deviation is 0.23. Figure 31 shows a comparison between
the experimental and predicted shear strengths for the training data. To validate the
model, 15 additional experimental results, which were not exposed to GP in the
training process, were used. The average and standard deviation of the ratio be-
tween the predicted and experimental shear strengths are 1.11 and 0.21,
respectively. The RMS error over the validation data is 0.035.

www.manaraa.com

184 V.V. Toropov, L.F. Alvarez and O.M. Querin

Figure 32. Comparison of experimental and predicted shear strengths

8.4 Conclusions

An empirical model to predict the shear strength of reinforced concrete deep
beams has been obtained by GP. Experimental results are used to build and vali-
date the model. Good agreement between the model predictions and experiments
has been achieved. As more experimental results and knowledge of the shear
behaviour of deep beams become available, the GP prediction could be im-
proved.

The GP model predicts the following behaviour between the shear strength and
the influencing parameters:
; The shear span to depth and main longitudinal bottom reinforcement ratios

have the most significant effect on the shear strength of reinforced concrete
deep beams.

; The shear strength is inversely proportional to the shear span to depth ratio;
the higher the shear span to depth ratio, the less the shear strength.

; The shear strength increases with the increase of the main longitudinal
bottom reinforcement ratio up to a certain limit beyond which no im-
provement can be achieved.

; The effect of the beam span to depth ratio and web reinforcement on the
shear strength is very small.

www.manaraa.com

Applications of GA and GP 185

References
ACI Committee 318 (1999). Building Code Requirements for Structural Concrete (ACI

318-99) and Commentary (ACI 318R-99). American Concrete Institute, Detroit.
Aguilar G., Matamoros A.B., Parra-Montesinos G.J., Ramírez J.A. and Wight J.K. (2002).

Experimental evaluation of design procedures for shear strength of deep reinforced
concrete beams. ACI Structural Journal 99:539-548.

Altair OptiStruct version 4.0 (2000). Altair Engineering Inc.
Alvarez L.F., Hughes D.C. and Toropov,V.V. (2000). Optimization of the manufacturing

process for Roman cement. In Sienz, J. (ed.), Engineering Design Optimization.
Process and Product Improvement. Proceedings of 2nd ASMO UK / ISSMO Confer-
ence, 27-32.

Ashour A.F. (2000). Shear capacity of reinforced concrete deep beams. Structural Engi-
neering Journal ASCE 126:1045-1052.

Ashour A.F., Alvarez L.F. and Toropov V.V. (2003). Empirical modelling of shear strength
of RC deep beams by genetic programming. Computers and Structures 81:331-338.

Audze P. and Eglais V. (1977). New approach for planing out of experiments. Problems
of Dynamics and Strengths 35:104-107. Zinatne Publishing House, Riga

Baruch M. (1982). 15 Optimal correction of mass and stiffness matrices using measured
modes. AIAA J. 20:441.

Bates S.J., Sienz J. and Toropov V.V. (2004). Formulation of the optimal Latin hypercube
design of experiments using a permutation genetic algorithm, Proceedings of. 45th
AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics & Materials Conf.
Palm Springs, California, 19-22 April 2004.

Booker A.J. (1998). Design and analysis of computer experiments. AIAA-98-4757. In
Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, AIAA. Part 1:118-128. St. Louis.

Box G.E.P. and Draper N.R. (1987). Empirical model-building and response surfaces.
New York, John Wiley and Sons.

British Standards Institution (1997). Structural use of concrete, BSI, BS8110: Part 1.Milton
Keynes,

 CEB-FIP (1993). Model Code 1990 for concrete structures. Thomas Telford Services,
Ltd.. London, Comité Euro-International du Béton, Laussane.

Choi K.K., Youn B.D. and Yang R.-J. (2001). Moving Least Square Method for reliability-
based design optimization. Proc. 4th World Cong. Structural & Multidisciplinary Op-
timization, Dalian, China

CIRIA Guide 2 (1977). The Design of Deep Beams in Reinforced Concrete. Over Arup and
Partners, and Construction Industry Research and Information Association, London,
reprinted 1984.

 CSA Technical Committee on Reinforced Concrete Design, A23.3-94 (1994). Design of
Concrete Structures. Canadian Standards Association, Ontario, Canada.

Davis L. (1985). Applying adaptive algorithms to epistatic domains, Proc. Int. Joint conf.
on Artificial Intelligence 162-164.

De Paiva H. A. and Siess C. P. (1965). Strength and behaviour of deep beams in shear.
Journal of the Structural Division, ASCE ST5:19-41.

www.manaraa.com

186 V.V. Toropov, L.F. Alvarez and O.M. Querin

FIA (2002). Article 3: Bodywork and Dimensions: Subsection 3.4.2, 2002. Formula One
Technical Regulations.

Friedman J.H. (1991). Multivariate adaptive regression splines (with discussion). Annals
of Statistics 19:1.

Goldberg D.E. (1989). Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading, MA.

Goldberg, D.E. and Lingle, R. (1985). Alleles, loci, and the TSP, Proc. 1st Int. conf. on
Genetic Algorithms, 154-159. Hillsdale, NJ.

Cawley P. and Adams R.D. (1979). The location of defects in structures from measure-
ments of natural frequencies. J. Strain Analysis 14:49-?.

Gray G. Li Y., Murray-Smith D. and Sharman K. (1996). Structural system identification
using genetic programming and a block diagram oriented simulation tool. Electronics
Letters 32:1422-1424-?.

Gray G., Murray-Smith D. Sharman K. and Li,Y. (1996). Nonlinear model structure
identification using genetic programming. In Late-breaking papers of Genetic Pro-
gramming '96, Stanford, CA.

Gürdal Z. Haftka R.T. and Hajela, P. (1999). Design and optimization of laminated com-
posite material. John Wiley & Sons.

Haftka R.T. (1997). Optimization and experiments – a survey. In Tatsumi T., Watanabe
E. and Kambe T., eds., Theoretical and Applied Mechanics 1996, Proceedings of XIX
International Congress of Theoretical and Applied Mechanics,303-321. Elsevier.

Hajela P. and Soeiro F. J. (1990a). Structural damage detection based on static and modal
analysis. AIAA J. 28:1110-?.

Hajela P. and Soeiro F.J. (1990b). Recent Developments in Damage Detection Based on
System Identification Methods. Structural Optimization 2:1-?.

Hassiotis S. and Jeong G.D. (1993). Assessment of structural damage from natural fre-
quency measurements. J. Computers & Structures 49:679-?.

Iman R.L. and Conover W.J. (1980). Small sample sensitivity analysis techniques for
computer models, with an application to risk assessment, Communications in Statistics,
Part A. Theory and Methods 17:1749-1842.

Jin R., Chen W. and Sudjianto A. (2003). An efficient algorithm for constructing optimal
design of computer experiments. DETC-DAC48760, 2003 ASME Design Automation
Conference, September 2-6, 2003. Chicago, IL.

Johnson M., Moore L. and Ylvisaker D. (1990). Minimax and maximin distance designs. J.
Statist. Plann. Inference 26:131-148.

Kabe A.M. (1985). Stiffness matrix adjustment using mode data. AIAA J 23:1431.
Keane A. and Nair P. (2005). Computational Approaches for Aerospace Design: The

Pursuit of Excellence. Wiley.
Keijzer M. and Babovic V. (1999). Dimensionally aware genetic programming. Orlando.

In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M. and
Smith, R.E, eds., GECCO-99: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Florida, USA. Morgan Kauffman Publishers.

www.manaraa.com

Applications of GA and GP 187

Keijzer M. and Babovic V. (2000). Genetic programming within a framework of computer-
aided discovery of scientific knowledge. In: Whitley D., Goldberg D. Cantu-Paz E.,
Spector L., Parmee I. and Beyer H., eds., GECCO-2000: Proceedings of the Genetic
and Evolutionary Computation Conference, Las Vegas, USA. Morgan Kauffman Pub-
lishers.

Kinnear, K.E. (1994). Advances in genetic programming. MIT Press.
Kong F.K., Robins P.J. and Cole D. F. (1970). Web reinforcement effects on deep beams.

ACI Journal 67:1010-1017.
Kong F. K., Robins P. J., Kirby D.P. and Short D.R. (1972). Deep beams with inclined web

reinforcement. ACI Journal 69:172-176.
Kong F. K. (1990). Reinforced concrete deep beams. Edited by F.K. Kong; Blackie. New

York.
Koza J.R. (1992). Genetic Programming: On the programming of computers by means of

natural selection. MIT Press.
Lapierre H. and Ostiguy G. (1990). Structural model verification with linear quadratic

optimization theory. AIAA J. 28:1497-?.
Leonhardt F., and Walther R. (1970). Deep beams. Deutscher Ausschuss Für Stahlbeton

Bulletin 178. Wilhelm Ernst and Sohn (Berlin), CIRIA English Translation.
Mackay M.D. , Beckman R.J. and Conover W.J. (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.
Technometrics 21:239-245.

Madsen K. and Hegelund P. (1991). Non-gradient subroutines for non-linear optimiza-
tion. Institute for Numerical Analysis, Technical University of Denmark, Report NI-
91-05.

Manuel R.F. Slight B.W. and Suter G. T. (1971). Deep beam behaviour affected by length
and shear span variations. ACI Journal 68:954-958.

Mau S.T. and Hsu T.T.C. (1987). Shear strength prediction for deep beams with web rein-
forcement. ACI Structural Journal 513-523.

McKay B., Willis M.J., Hidden H.G., Montague G.A. and Barton G.W. (1996). Identifi-
cation of industrial processes using genetic programming. In Friswell, M.I., and
Mottershead, J.E., eds., Proceedings of International Conference on Identification in
Engineering Systems, Swansea, 328-337. The Cromwell Press Ltd.

Matheron G. (1963). Principles of geostatistics. Economic Geology 58:1246-1266.
Michalewicz Z. (1992). Genetic algorithms + data structures = evolution programs.

Springer-Verlag
Myers R.H. and Montgomery D.C. (1976). Response surface methodology: Process and

Product Optimization Using Designed Experiments. John Wiley & Sons, New York,
NY.

Nevey S. and Stephens M. (2000). Weight reduction in a Formula One composite wing.
Altair Hyperworks: second UK conference. Towcester Racecourse, UK.

Oliver I.M., Smith D.J. and Holland, J.R.C. (1987). A study of permutation crossover
operators on the travelling salesman problem. Proc. 2nd Int. Conf. on Genetic Algo-
rithms, 411-423, Massachusetts Institute of Technology, Cambridge, MA.

Ramakrishnan V. and Ananthanarayana Y. (1968). Ultimate Strength of deep beams in
shear. ACI Journal 65:87-98.

www.manaraa.com

188 V.V. Toropov, L.F. Alvarez and O.M. Querin

Ravaii H., Toropov V.V. and Horoshenkov K.V. (1997). Structural damage recognition
based on optimization techniques. In Gutkowski, W., Mroz, Z., eds., Proc. of 2nd
World Congress of Structural and Multidisciplinary Optimization, Zakopane, Poland,
May 1997, 1:299-304. Polish Academy of Sciences.

Ravaii H., Toropov V.V. and Horoshenkov K.V. (1998a). Mixed numerical-experimental
damage recognition in steel structures. In: Allison I.M. (ed.), Experimental Mechanics.
Advances in Design, Testing and Analysis - Proc. 11th Int. Conf. on Experimental Me-
chanics, 1: 77-82,. Oxford, August 24-28, 1998. A.A. Balkema, Rotterdam,

Ravaii H., Toropov V.V. and Mahfouz S.Y. (1998b). Application of a genetic algorithm
and derivative-based techniques to identification of damage in steel structures. In: M.
Tanaka, G.S. Dulikravich, (eds), Inverse Problems in Engineering Mechanics - Proc.
Int. Symposium, 571-580, Nagano City, Japan, March 24-27, 1998. Elsevier.

Regan P.E. (1993). Research on shear: a benefit to humanity or a waste of time?. The
Structural Engineer 71:337-346.

Rogowsky D. M., MacGregor J.G., and Ong S. Y. (1986). Test of reinforced concrete deep
beams. ACI Structural Journal 83:614-623.

Roux W.J., Stander N. and Haftka R.T. (1998). Response surface approximations for
structural optimization. International Journal for Numerical Methods in Engineering
42:517-534.

Sacks, J., Schiller, S.B. and Welch, W.J. (1989). Designs for computer experiments,
Technometrics, 34:15-25.

Sahab M.G., Toropov V.V. and Ashour A.F. (2001). Cost optimization of reinforced con-
crete flat slab buildings by a genetic algorithm. 4th World Congress of Structural an
Multidisciplinary Optimization. Dalian, China.

Shewry M. and Wynn H. (1987). Maximum entropy design. J. Appl. Statist. 14:165-170.
Smith K. N. and Vantsiotis A. S. (1982). Shear strength of deep beams. ACI Structural

Journal 79:201-213.
Stephens M., Gambling M., Jones R.D., Toropov V.V. and Alvarez L.F. (2002). Weight

optimization of a formula one car composite component. In: P.D. Gosling (ed.), Proc.
of 4th ASMO UK / ISSMO Conf. on Engineering Design Optimization. Process and
Product Improvement, July 4-5, 2002, 178-183. Newcastle

Subedi N. K., Vardy A.E. and Kubota N. (1986). Reinforced concrete deep beams- some
test results. Magazine of Concrete Research 38:206-219.

 Subedi N.K. (1988). Reinforced concrete deep beams: a method of analysis. Proceedings
of Institution of Civil Engineering, Part 2, 85:1-30.

Suter G. T. and Manuel, R. F. (1971). Diagonal crack width control in short beam. ACI
Journal 68:451-455.

Tan K.H., Weng L. W. and Teng, S. (1997). A strut-and-tie model for deep beams sub-
jected to combined top-and-bottom loading. The Structural Engineer Journal
(London), 75:215-225.

Tan K. H. and Lu H. Y. (1999). Shear behaviour of large reinforced concrete deep beams
and code comparisons. ACI Structural Journal 96:836-845.

Teng S., Kong F. K. and Poh S. P. (1998). Shear strength of reinforced and pre-stressed
concrete deep beams. Part I: Current design methods and a proposed equation. Pro-
ceedings Institution of Civil Engineers, Structures & Buildings 128:112-123.

www.manaraa.com

Applications of GA and GP 189

Toropov V.V. (2001). Modelling and approximation strategies in optimization - global and
mid-range approximations, response surface methods, genetic programming, low / high
fidelity models. In: Blachut J.; Eschenauer H. A. (eds), Emerging Methods for Multid-
isciplinary Optimization, CISM Courses and Lectures, No. 425, International Centre
for Mechanical Sciences, 205-256. Springer.

Toropov V. V. and Alvarez L.F. (1998a). Application of genetic programming and re-
sponse surface methodology to optimization and inverse problems. In: M. Tanaka, G.S.
Dulikravich (eds), Inverse Problems in Engineering Mechanics - Proc. Int. Symp., 551-
560, Nagano City, March 1998. Elsevier,.

Toropov V. V. and Alvarez L.F. (1998b). Approximation model building for design opti-
mization using genetic programming methodology. Paper AIAA-98-4769, 7th
AIAA/USAF/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, 490-
498, St. Louis, USA, September 1998.

Toropov V. V., Alvarez L.F. and Ravaii, H. (1999a). Structural damage recognition using
optimization techniques and genetic programming methodology, 3rd
ISSMO/UBCAD/UB/AIAA World Congress of Structural and Multidisciplinary Optimi-
zation, (CD Proc.), Buffalo, NY, USA, May 17-21, 1999.

Toropov V. V., Alvarez L.F. and Ravaii H. (1999b). Recognition of damage in steel struc-
tures using genetic programming methodology. In: M.I. Friswell, J.E. Mottershead,
A.W. Lees (eds.), Proc. 2nd International Conf. on Identification in Engineering Sys-
tems, 382-391.Swansea, March 29-31, 1999. The Cromwell Press Ltd.

 Toropov V.V., Bates S.J. and Querin O.M. (2007). Generation of extended uniform Latin
hypercube designs of experiments. 9th Int. Conference on the Application of Artificial
Intelligence to Civil, Structural and Environmental Engineering. St. Julians, Malta, 18-
21 September 2007.

Toropov V.V. and Markine V.L. (1996). The use of simplified numerical models as mid-
range approximations. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis
and Optimization, Part 2, 952-958. Bellevue, WA.

Toropov V.V., Markine V.L., and Holden C.M.E. (1999). Use of mid-range approxima-
tions for optimization problems with functions of domain-dependent calculability,
Proceedings of 3rd World Congress of Structural and Multidisciplinary Optimization,
Buffalo, NY.

Toropov V.V., Schramm U., Sahai,A., Jones R. and Zeguer, T. (2005). Design optimiza-
tion and stochastic analysis based on the Moving Least Squares Method. In:
Herskovits J, Mazorche S. and A. Canelas(eds) 6th World Congress of Structural and
Multidisciplinary Optimization. Paper 9412. CD-ROM Proceedings. Rio de Janeiro,
Brazil, May 2005.

Toropov V.V. and Yoshida F. (2005). Application of advanced optimization techniques to
parameter and damage identification problems. In: Mroz, Z. and Stavroulakis, G.E.
(eds.), Parameter Identification of Materials and Structures, CISM Courses and Lec-
tures, Vol. 469:177-263, International Centre for Mechanical Sciences. Springer.

Wang W., Jiang D.-H., and Hsu C.-T.T. (1993). Shear strength of reinforced concrete deep
beams. Journal of Structural Engineering 119:2294-2312.

www.manaraa.com

CHAPTER 4

Advances in Neural Networks in
Computational Mechanics and Engineering

Jamshid Ghaboussi

Department of Civil and Environmental Engineering
University of Illinois at Urbana Champaign

Urbana, Illinois 61801, USA

Abstract. A vast majority of engineering problems are inverse problems,
while the mathematically based engineering problem solving methods and
computational mechanics are primarily capable of solving forward
problems. Nature has evolved highly effective, robust and imprecision
tolerant problem solving strategies for very difficult inverse problems.
Biologically inspired soft computing methods such as neural network,
genetic algorithm and fuzzy logic inherit the basic characteristics of
nature’s problem solving methods and, as such, they are suitable for
inverse problems in engineering. In this chapter we start by discussing the
fundamental differences between the mathematically based engineering
problem solving methods and biologically inspired soft computing
methods. Bulk of the rest of the chapter is devoted to applications of
neural networks in computational mechanics and several difficult inverse
engineering problems.

1 Introduction
The first application of neural networks in computational mechanics and
structural engineering was in the modeling of the constitutive behavior of
materials (see Ghaboussi Garrett and Wu, 1990, 1991). In that application it was
demonstrated that neural networks are capable of learning the constitutive
behavior of plane concrete in two-dimensions directly from experimental results.
Although, that work demonstrated the potential of neural networks in
computational mechanics, there remained a number of important unresolved
questions. Some of these questions dealt with the theoretical issues such as: how
do the neural networks learn and what do they learn from training data; what are
the limitations of such learning in computational mechanics and how can these
limitations be quantified; how to determine the sufficiency of data for training
neural networks; and other similar issues. For example, in the first application of
neural networks in constitutive modeling (see Ghaboussi Garrett and Wu 1990,
1991) the term “comprehensive data set for training of neural networks” was

www.manaraa.com

192 J. Ghaboussi

used. However, at that time it was not clear how to determine what constituted a
comprehensive data set. Other unresolved questions dealt with practical issues,
such as the size of neural networks and training algorithms. Considerable
advances have been made in understanding these issues and some of these
advances will be discussed in this chapter.

It is assumed that the reader has a basic knowledge of neural networks and
computational mechanics. The discussions in this chapter are devoted to the
issues that make the application of neural networks in computational mechanics
and engineering possible and effective, leading to new and robust methods of
problem solving. Since neural networks and other computational intelligence or
soft computing tools are biologically inspired, we will first examine the
computing and problem solving strategies in nature. We will discuss the
fundamentals of the differences between the computing and problem solving
strategies in nature and our mathematically based problem solving methods such
as computational mechanics. Understanding these differences plays an important
role in development and utilization of the full potential of soft computing
methods. They also help us understand the limitations of soft computing
methods.

Another important focus of this chapter is on examining the characteristics
of the problems that biological systems encounter and how nature has evolved
effective strategies in solving these problems. A vast majority of these problems
are inverse problems, as are a vast majority of engineering problems, including
problems in mechanics. Again, our problem solving strategies have evolved
differently as they are based on mathematics. We will examine the limitations
of the mathematically based methods in directly addressing the inverse
problems. Biologically inspired soft computing methods offer potentials for
addressing these methods. However, full utilization of these potentials requires
new thinking and full understanding of the fundamental issues that will be
discussed in this chapter.

2 Computing and Problem Solving in Nature
Computing and problem solving does occur in nature in a massive way. We
normally do not assign problem solving capabilities to biological systems, such
as animals, eco-systems and insect colonies. Computing in nature does occur in
human and animal brains. Although brains are very different than our
computers, they nevertheless do perform computing tasks. Moreover, human or
animal brains perform computing tasks that are far more complex and well
beyond the capabilities of our present computers. Computing and problem
solving strategies in nature have evolved to develop capabilities that are
important in the survival and propagation of the species. Exploring these
capabilities is important in understanding the fundamentals of computing and
problem solving in nature; these fundamentals are very different than the

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 193

fundamentals underlying our engineering problem solving methodology,
including mechanics, computation and computational mechanics.
Understanding these differences is essential in order to effectively use the
biologically inspired soft computing methods in engineering and computational
mechanics.

Computing and problem solving strategies in nature have evolved to solve
difficult inverse problems. Most of the problems that human and animal brains
solve are inverse problems. Our engineering problem solving methods work
differently. Although most engineering problems are also inverse problems, we
normally pose them as forward problems and solve them that way. In a forward
problem the system (or model of the system) and the input to the system is
known, and the output needs to be determined. We pose and solve the
engineering problems as forward problems because the mathematically based
problem solving methods in mechanics and engineering are only suitable for
solving forward problems. These issues will be further discussed later in this
chapter.

There are two types of inverse problems. In the first type of inverse
problems the system and the output of the system is known and the input to the
system that produces the known output needs to be determined. In the second
type of inverse problems the input and output to the system are known and the
system needs to be identified.

One of the important classes in the first type of inverse problems in nature
is recognition, such as: voice recognition, face recognition, recognizing the prey,
recognizing danger, etc. The forward problems in this class are when we know
an individual and hear his/her voice and see his/her face. The inverse problem is
when we hear a voice or see a face and have to identify the person. Another
class of inverse problems in nature is control; our brains control our limbs or
control the functioning of internal organs. The forward problem in this case is to
send a known signal to a limb or an organ and observe the response of the limb
or organ. The inverse problem is to determine the right input signal that would
produce the desired response in a limb or an organ.

Brains have evolved to perform these inverse tasks with two important
characteristics. These inverse problems have to be solved robustly and in real-
time. Survival depends on these characteristics. Animals have to recognize
danger instantaneously in order to take evasive action. Similarly, they have to
recognize their prey in real-time to have any chance of hunting it successfully.
Delay in recognition can be detrimental to a human being or an animal.
Robustness is also a key factor in solving the inverse problems in nature. Images
may be partially blocked or voices may contain noise. Robustness in some
important way implies imprecision tolerance. All of the inverse problems in
nature have a certain degree of imprecision tolerance. For example, a predator
needs to determine its distance to his prey. However, it does not need to know
that distance precisely; an approximate value will suffice. Similar degrees of

www.manaraa.com

194 J. Ghaboussi

imprecision tolerance exist in all of the inverse problems in nature. Nature’s
problem solving strategies have evolved with a degree of imprecision tolerance.

Brains have evolved as massively parallel systems of neurons connected
with synapses and dendrites. The massively parallel structure of the brains
makes possible the real-time and robust computing in solving the inverse
problems. Moreover, it inherently operates with a degree of imprecision
tolerance. This is of course very different from our present day computers that
have a high degree of precision requirement. We will also discuss later in this
chapter why our computers are not suitable for directly solving the inverse
problems.

How do biological systems solve inverse problems? This is an important
question, since similar methods can be deployed in solving inverse problems in
engineering and computational mechanics. Nature and brains solve inverse
problems by utilizing two important strategies: learning and reduction in
disorder. First, we will discuss the strategy of learning in solving inverse
problems. Of course, as we will see later, learning itself is a form of reduction in
disorder.

Learning from the forward problems is the main strategy that nature uses to
solve the inverse problems. For example, in the problem of voice and face
recognition the repeated instances of seeing a person and hearing their voice are
the forward problems that lead to learning to solve the inverse problem of
recognition. Learning to control ones limbs also occurs by the repetition of the
forward problem. This is clearly seen when a baby learns through repetition to
control the movement of his or her arms, fingers and other limbs. The
information learned from forward problems is stored in the synapses of the
neurons in our brains. Similar strategies can be used in engineering and
computational mechanics. In this case, the information acquired for solving the
inverse engineering problem is stored in the connection weights of the neural
networks. Later in this chapter we will present a case of a successful application
of the same strategy in solving a difficult inverse problem in engineering. What
makes it possible to apply this strategy to engineering problems is the learning
capability of the neural networks, where the knowledge and information is
stored in the connection weights.

Reduction in disorder is also a powerful method that nature uses for solving
inverse problems. This may not be as clearly observable as the learning. In fact,
reduction in disorder underlies learning in massively parallel systems, such as
brains and neural networks. As the collective state of a complex system (brains
and neural networks are complex systems) approaches a solution to a specific
problem, disorder in the state corresponding to that problem reduces. Evolution
also leads to reduction in disorder: in this case in a self-organized manner.
Organisms have evolved a high degree of order (and a very low degree of
disorder). Similarly, evolutionary methods, such as genetic algorithm, also lead
to reduction in disorder. We can also say that there is an increase in order (or

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 195

reduction in disorder) when brains or neural networks approach a state for
storing acquired knowledge and information. Acquisition and storing of the
information in the synapses or connection weights constitutes learning.

3 Mechanics, Computation and Computational Mechanics
The field of mechanics deals with observing and modeling the natural
phenomena. When a physical event is observed - whether it is an experiment or
a naturally occurring event - new information is generated. This information
about the physical event is contained in the data that may consist of the
recordings of the physical event and/or numerical data from the measurements.
The next step is to create a model that can be used to describe that event and
other similar events, leading to unifying principles. The universal approach,
from the inception of mechanics, has been to develop mathematical models of
observed phenomena and physical events. We normally accept this approach
without even thinking about it, with the implied understanding that the
mathematical modeling is the only possible method that can be used to describe
the natural phenomena. Here, we need to further examine this approach, since it
is not the only possible method of describing the natural phenomena. In fact,
there are many other methods. In this chapter we are interested in methods that
involve extracting and storing the information about the natural phenomenon
contained in the data, in the connection weights of neural networks. Information
contained in a mathematical model can also be stored in a neural network. Since
developing a mathematical model of a natural phenomenon and storing the
information about that phenomenon are two completely different approaches, it
is important that we examine the fundamentals of both approaches. We will
examine the fundamentals of mathematically based mechanics and
computational mechanics in this section,

All modeling, engineering problem solving methods, and computation is
based on mathematics. We will refer to them as mathematically based methods.
All the mathematically based methods inherit their characteristics from
mathematics. Normally, we do not even think about the fundamental
characteristics of the mathematically based methods. However, in this case we
need to examine them, since they are so radically different from the fundamental
characteristics of the problem solving strategies in nature that underlie the soft
computing or computational intelligence methods.

The three fundamental properties of the mathematically based methods in
engineering and computational mechanics that are inherited from mathematics
are: precision; universality; and functional uniqueness.

3.1 Precision

Precision or “exactness” is a property of all the mathematically based methods.
It is because of the precision requirement that all computing, including

www.manaraa.com

196 J. Ghaboussi

computational mechanics, is considered as “hard computing”. Precision
requirements are the most significant differences between the soft computing
and hard computing methods. Precision requirements may not be obvious to the
users of engineering software. For example, the input to a typical finite element
analysis program may define the geometry of the structure and specify the
material parameters and loads. These quantities, especially the material
parameters, cannot be determined with a high degree of precision. However, the
computer software requires precise values. Users of the computer software often
provide the best estimates of the input parameters and they do not view them as
precise. However, the mathematically based methods and hard computing
software consider the input parameters to be precise to within round off
(normally six to fourteen significant figures). Similarly, the output of the
engineering computer software is also precise to within round off. However,
they are not often considered so by the users of the software. In fact, there may
not be much use for a high degree of precision in most engineering and
computational mechanics problems.

3.2 Universality

Universality is such a basic property of all mathematical functions that we
usually do not think about it. Universality means that the mathematical functions
are defined and realized universally for all the possible values of their variables.
Again, mathematically based methods use functions that are universal but the
physical phenomena they describe most often are not. A simple example is the
linearly elastic material behavior. When we write the expression that stress =
modulus of elasticity x strain, it describes a phenomenon that is only valid over
a range of the stresses and strains. But the equation itself is valid for all the
possible values of stress and strain. We will see later that the same information
can be learned by a neural network to within an imprecision tolerance over the
range of its validity.

3.3 Functional uniqueness

Mathematical functions are also unique in the sense that each function provides
a unique mapping different from all the other functions. For example, there is
only one sin(x) function and it is valid for all the possible values of x from
minus infinity to plus infinity. We will see later that in soft computing, different
neural networks, with different numbers of neurons can represent the same
function over a range of x to within a prescribed level of imprecision tolerance.

The consequences of precision, universality, and functional uniqueness in
the mathematically based engineering problem solving methods and hard
computing are that these methods are only suitable for solving forward
problems. In the forward problems the model of the system and the input to that
system are known, and the output of the system is determined. Mathematically

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 197

based methods are not suitable for directly solving the inverse problems.
Although a vast majority of engineering and computational mechanics problems
are inherently inverse problems, we do not pose them as such, and do not
consider solving them as inverse problems. An important reason for this is that
the inverse problems do not have unique solutions, and very often there is not
enough information to determine all the possible solutions. The few inverse
problems that are tackled with the conventional mathematically based methods
are formulated such that the result is determined from the repeated solutions of
the forward problems.

4 Hard and Soft Computing Methods
Almost all the computing, including computational mechanics and finite element
analysis, have to be considered hard computing. All computing are based on
mathematical approaches to problem solving, and they inherit their basic
characteristics from mathematics.

The hard computing methods often solve an idealized precise problem
deterministically. Using the current hard computing methods usually involves
three steps. First, the problem is idealized to develop a precise mathematical
model of the system and the input data. Next, the hard computing analysis is
performed within the machine precision on a sequential or parallel computer.
Finally, the output to the idealized problem is obtained with a high degree of
precision, often much higher level of precision than required in practice. This
form of hard computing method is often used in modeling and evaluation of
behavior and design of physical systems that are often associated with a certain
level of imprecision and uncertainty. Engineering judgment is used in an ad hoc
manner to utilize the results of the hard computing analyses.

The consequence of the mathematically based precision in the hard
computing methods is that there is no built-in procedure for dealing with
uncertainty, lack of sufficient information, and scatter and noise in the data. All
the input data must be provided and, where there is a gap, estimates must be
made to provide “reasonable precise values" of the input data. Also, all the noise
and scatter must be removed before providing the input data to the hard
computing methods. Inherently, there are no internal mechanisms for dealing
with the uncertainty, scatter and noise. Consequently, the hard computing
methods generally lack robustness.

Hard computing methods are more suitable for direct or forward analysis
and are often used for problems posed as direct. It is very difficult to solve
inverse problems with the current state of the hard computing methods. As will
be discussed in a later section, there are many inverse problems that are either
not solved currently, or a simplified version of these problems is posed and
solved as direct problems.

www.manaraa.com

198 J. Ghaboussi

4.1 Biologically Inspired Soft Computing Methods

Soft computing methods are the class of methods which have been inspired by
the biological computational methods and nature's problem solving strategies.
Currently, these methods include a variety of neural networks, evolutionary
computational models such as genetic algorithm, and linguistic based methods
such as fuzzy logic. These methods are also collectively referred to as
Computational Intelligence Methods. These classes of methods inherit their
basic properties and capabilities from the computing and problems solving
strategies in nature. As mentioned earlier, these basic characteristics are
fundamentally different from the basic characteristics of the conventional
mathematically based methods in engineering and computation.

In the majority of the applications of neural networks and genetic algorithm,
researchers have used these methods in limited ways in simple problems. In the
early stages of introduction of any new paradigm, it is initially used in a similar
manner as the methods in existence prior to the introduction of the new
paradigm. Neural networks and other computational intelligence methods are
new paradigms. It can be expected that initially they will be used in similar
ways as the mathematically based methods in engineering and computational
mechanics, as are the vast majority of current applications. Such applications
seldom exploit the full potential of the soft computing methods. For example,
neural networks are often used as simple function approximators or to perform
tasks that simple regression analysis will suffice. Similarly, genetic algorithm is
often used in highly restricted optimization problems. The learning capabilities
of neural networks and the powerful search capabilities of genetic algorithm can
accomplish far more. They can be used in innovative ways to solve problems
which are currently intractable and are beyond the capability of the conventional
mathematically based methods. Problem solving strategies of the biological
systems in nature often provide good examples of how these methods can be
used effectively in engineering. Natural systems and animals routinely solve
difficult inverse problems. Many of these problem solving strategies can be
applied to engineering problems.

4.2 Imprecision Tolerance and Non-universality

Biological systems have evolved highly robust and effective methods for dealing
with the many difficult inverse problems, such as cognition; the solution of these
problems is imperative for the survival of the species. A closer examination of
cognition will reveal that for animals, precision and universality are of no
significance. For example, non-universality in cognition means that we do not
need to recognize all the possible voices and faces. Recent studies have
provided a plausible explanation for the large size of human brains based on
cognition. The large size of human brains have evolved so that the humans can
recognize the members in their living groups. Human beings lived in groups of

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 199

150 to 200 individuals and our brains had to be large enough to recognize that
many individuals. Our brains are only capable of recognizing 150 to 200 faces.
This non-universality is in contrast with the mathematically based methods. If it
were possible to develop a mathematically based cognition method, it would be
universal and it would be able to recognize all the possible faces.

On the other hand, real time response and robustness, including methods for
dealing with uncertainty, are essential in nature. Soft computing methods have
inherited imprecision tolerance and non-universality from biological systems.
For example, a multi-layer, feed-forward neural network representing a
functional mapping is only expected to learn that mapping approximately over
the range of the variables present in the training data set. Although different
levels of approximation can be attained, the approximate nature of the mapping
is inherent.

Another inherent characteristic of the soft computing methods is their non-
universality. Soft computing methods are inherently designed and intended to
be non-universal. For instance, neural networks learn mappings between their
input and output vectors from the training data sets and the training data sets
only cover the range of input variables which are of practical interest. Neural
networks will also function outside that range. However, the results become less
and less meaningful as we move away from the range of the input variables
covered in the training set.

4.3 Functional Non-uniqueness

A third characteristic of the soft computing methods is that they are functionally
non-unique. While mathematical functions are unique, neural network
representations are not unique. There is no unique neural network architecture
for any given task. Many neural networks, with different numbers of hidden
layers and different number of nodes in each layer, can represent the same
association to within a satisfactory level of approximation. It can be clearly seen
that the functional non-uniqueness of the neural networks is the direct
consequence of their imprecision tolerance.

An added attraction of soft computing methods in computational mechanics
is as the consequence of the imprecision tolerance and random initial state of the
soft computing tools. This introduces a random variability in the model of the
mechanical systems, very similar to the random variability which exists in the
real systems. The random variability plays an important role in most practical
problems, including nonlinear quasi static and dynamic behavior of solids and
fluids where bifurcation and turbulence may occur. Finite element models are
often idealized models of actual systems and do not contain any geometric or
material variability. An artificial random variation of the input parameters is
sometimes introduced into the idealized finite element models to account for the

www.manaraa.com

200 J. Ghaboussi

random scatter of those parameters in the real systems. On the other hand, the
soft computing methods inherently contain random variability.

In summary, we have discussed the fact that the mathematically based
methods in engineering and computational mechanics have the following basic
characteristics:

Precision
Universality
Functional uniqueness

In contrast, biologically inspired soft computing methods have the following
opposite characteristics:

Imprecision tolerance
Non-universality
Functional non-uniqueness

Although it may be counterintuitive, these characteristics are the reason behind
the potential power of the biologically inspired soft computing methods.

5 Neural Networks as Soft Computing Tools
The discussion in this section will be focused on multi-layer, feed-forward
neural networks, which are currently the most commonly used neural networks
in engineering applications (see Ghaboussi and Wu, 1998, Ghaboussi, 2001).
These neural networks consist of several layers of artificial neurons or
processing units. The input and the output layers are the first and the last layers.
The layers between the input and output layers are referred to as the “hidden
layers”. Each neuron is connected to all the neurons in the next layer, and the
signals propagate from the input layer, through the hidden layers, to the output
layer. The number of neurons in the input and output layers are determined by
the formulation of the problem. The number of neurons in the hidden layers
defines the capacity of the neural network which is related to the complexity of
the underlying information in the training data set. The relationship between the
number of neurons in the hidden layers, the capacity of neural networks, and the
complexity of the underlying process being modeled is not easily quantifiable at
the present. The input vector is provided as the activation of the neurons at the
input layer. Signals propagate from the input layer, through the hidden layer, to
the output layer. The activations of the output nodes constitute the output of the
neural network.

A neural network is trained with the training data set, such that within the
domain of the training data it approximately represents the mapping between the
input and output vectors that exists in the training data set. The approximation
in neural networks is represented by the error vectors within the domain of the
training data. Training of the neural network is the process of reducing the norm
of the error vector to a level below a tolerance.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 201

A neural network learns to satisfy its training data set approximately. It
differs fundamentally from a mathematical interpolation function, which
matches the training data set exactly. Neural networks are also different from a
regression analysis, which requires a specified function whose parameters are
determined.

In general, the output errors for the training data depend on a number of
factors relating to the complexity of the underlying information present in the
training data set, as well as the neural network architecture and the training
process. It is important to note that it is not desirable to reduce the error too
much. In the limit, if the output error is reduced to zero, then the neural network
would be functioning similar to an interpolation function and it will lose its
generalization capability between the data points in the training data set. The
generalization capability of neural networks is the direct consequence of the
imprecision tolerance.

Non-universality of soft computing methods that was discussed earlier is an
important consideration in the use of neural networks. Non-universality means
that neural networks can only learn to approximate relations that are within the
range of input variables present in the training data. Outside that range the
response of the neural network is not controlled. This is demonstrated with a
simple example shown in Figure 1. In this example a simple neural network
NN(1, 3, 3, 1) (the numbers in the parenthesis are the number of node in the
input, hidden and output layers) is trained with two sets of data taken from
within two ranges of sin(x) shown in the upper portion of the figure. Shown in
the lower portion of the figure are the responses of the trained neural networks.
It is clearly seen that the two neural networks have learned to approximate sin(x)
within the range of x in their training data. Outside those ranges the response of
the trained neural networks has no relation to the sin(x).

Although neural networks are inherently nonlinear, they can be trained to
learn linear functions within a range. This is shown in Figure 2 where the
training data is selected from a linear function within a range. It is clear that the
trained neural network has learned to approximate a linear function within that
range, while outside that range it exhibits a nonlinear response.

Neural networks can be trained and retrained. Retraining is an important
capability of neural networks. When new data becomes available with enhanced
information content, the new data can be added to the existing data set and used
in retraining the neural network. In this case, the neural network will be learning
the new information in the additional data. If the new data does not have any
new information, the connection weights of the previously trained neural
network do not change. It is not often possible to determine whether the new
data has new information. This can be easily verified by monitoring the changes

www.manaraa.com

202 J. Ghaboussi

Figure 1. Neural networks trained to approximate sin(x)
within two different ranges of x

Figure 2. Neural network learns to approximate a linear function

within two ranges of x.

in the connection weights during the retraining. If the neural network is retrained
only with the new data, it will “forget” the information that was contained in the

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 203

data used in the original training. This is demonstrated in Figure 3. The upper
part of the figure shows the range of the training data and the lower part of the
figure shows the performance of the trained neural network.

The neural network NN(1, 3, 3, 1) was first trained with data from a range
of x in sin(x) shown on the left. The same neural network was next retrained
with data from another portion of the same function, shown on the right. It can
be seen that the retrained neural network “forgot” the earlier information and
learned to approximate the data within the new range.

Figure 3. Retraining a neural network with new data.

Imprecision tolerance in neural networks creates a capability for dealing

with scatter in data. The information in the training data sets for neural networks
can contain many forms of information. Some information in the data is fairly
dominant and easily stands out. Other types of information may appear weak
and difficult to learn. All types of information may contain scatter, which itself
can be considered a form of information. Neural networks can deal with scatter
in data if trained properly. The danger in this case is overtraining that may force
the neural network to learn the scatter as well. We will demonstrate these issues
with a simple example.

Figure 4 shows a data set in the x, y plane. We wish to train a neural
network to relate x (input) to y (output). Clearly, this data has a dominant pattern
consisting of two nearly linear segments and a transition between them around
x = 8.

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14

Trained Retrained only with new data

NN (1, 3, 3, 1)

www.manaraa.com

204 J. Ghaboussi

Figure 4. Data with scatter.

In the upper left part of Figure 5, the response of small neural network

NN(1, 2, 2, 1) trained with the data with scatter is shown. It is clear that the
neural network has learned the dominant pattern in the data well. If the training
in the same neural network is continued and new nodes are added to the hidden
layers adaptively (adaptive node generation will be discussed later), the response
of the neural network is shown in the other parts of Figure 5. For example, in the
upper right part of Figure 5 the neural network started with the same architecture
as in the upper left, with 2 nodes in each of the two hidden layers, and during the
continued training additional nodes were added to the hidden layer, ending with
5 nodes in each hidden layer. It can be seen that the neural network has started
learning the scatter in the data. The process of training and adding new nodes to
the hidden layers continued and two instances are shown in the lower part of
Figure 5, when hidden layers reach 10 and 20 nodes each. The continued process of

Figure 5. Training and over-training of a neural network
with data containing scatter.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 205

over-training is clearly visible. The part of Figure 5 on lower right shows a large neural
network that is clearly over-trained and has learned to represent all the data points
precisely. Although the over-trained neural network matches the data points, it may give
seriously erroneous and unreasonable results between the data points.

It is important to be aware of the possibility of over-training the neural
networks when dealing with measured and real data that often contain scatter.
When dealing with numerically generated data, often the data does not contain
any scatter. In those cases the over-training may not be obvious in the
performance of the neural network, as is the case when there is scatter in the
data. In some cases the nature of the information contained in the numerically
generated data, and the distribution of the data point may also lead to similar
phenomena as overtraining shown in Figure 5.

Transition from mathematical models to information contained in data .In
working with neural networks it is always important to remember that the
information that the neural network learns is contained in the data. The principle
of functional non-uniqueness, discussed earlier, means that different neural
networks can be trained to learn the information contained in the same data with
some imprecision. In many applications the data changes and the information
contained in the data also changes and is updated. We will see an example of
this in the autoprogressive algorithm that will be discussed later in the chapter.
At any point in the evolution of the data, it is possible to discard the old trained
neural network and start with a new neural network and train it on the expanded
and modified data set.

This observation leads to an important and profound point about the use of
neural networks in modeling physical phenomena such as modeling of material
behavior. In the mathematically based approaches, we use mathematical
functions to model the physical phenomena. The information about the response
of the physical system to the external stimuli is contained in that mathematical
model.

When we use neural networks to model the physical phenomena, the
information about the response of the physical system to the external stimuli is
learned by the neural network from its training data. So, if we start thinking in
terms of information - rather than mathematical models - then the neural
networks are simply tools for extracting the information from the data and
storing it. It is the learning capabilities of the neural networks that allow us to
extract the information. Since we can extract the information from data at many
stages, and with many different neural networks, it is the data and the
information contained in that data that is the soft computing equivalent of the
mathematical model and the information contained in the mathematical model.
In moving from mathematical modeling to soft computing with neural networks,
it is important that we start transitioning our thinking from mathematical model
to the information contained in data.

www.manaraa.com

206 J. Ghaboussi

6 Neural Networks in Material Modeling
Constitutive modeling is an inverse problem. In a typical material experiment
stresses are applied to a specimen and the resulting strains are measured. If the
material constitutive model is considered as a system, then the stresses and
strains are the input and the output of the system. The material constitutive
modeling is therefore an inverse problem, where the input and output are known
and the system needs to be determined.

The conventional approach to this problem is to develop a mathematical
model. Plasticity and other material modeling methods use mathematical
modeling to represent the information present in the measured stresses and
strains from the experiments. Neural networks can be used directly to extract the
information from the experimental data. First application of this approach to
model the constitutive behavior of plane concrete in two dimensions is reported
in (Ghaboussi, Garrett and Wu 1990, 1991). Experimental results were used to
directly train the neural network. It was shown that the neural networks can
learn to relate the stresses to strains or vice versa. For practical use in finite
element analysis it is preferable that the strains be used as the input to the neural
networks and the stresses be used as the output. A typical neural network for a
two dimensional material model can have the three components of strain as
input and the three components of stress as output. However, this type of neural
network is not suitable for representing the path dependence in constitutive
behavior of materials.

Information required to represent the path dependence of material behavior
consists of two parts: the current state of the material and immediate past
history. The current state may consist only of the current state of stresses and
strains, and this may be sufficient in absence of strong path dependence. In that
case the input to the neural network may consist of the current state and the
strains at the end of the increment (or the strain increments) and the output
representing the stresses at the end of the increment (or the stress increments).
As a simple example, we can consider a one-dimensional material behavior. At
any point, given the values of the strain and the stress, the material behavior
depends on whether the strains are increasing (loading) or decreasing
(unloading). The current state and strain increments as input contain sufficient
information to uniquely determine the stress increment as output.

Path dependence in multi-dimensions is far more complex and often the
current state as input is not sufficient. Information about the past history of the
state of strains and stresses is also needed. A three-point model was proposed in
paper by Ghaboussi, Garrett and Wu, 1991 in which the input consisted of the
strains and stresses at tn (current state), and at tn-1, tn-2 (history points) and the
strain increments (or strains at tn+1). The output of the neural network
represented the stresses at tn+1. This three point model was successfully applied
to a number of materials.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 207

Neural network were successfully used in the constitutive modeling of
concrete, composites and geomaterials (see Ghaboussi, Garrett and Wu 1990,
1991; Wu 1991; Ghaboussi 1992a, 1992b; Wu and Ghaboussi 1993; Ghaboussi,
Lade and Sidarta 1994; Ghaboussi and Sidarta, 1998; Sidarta and Ghaboussi,
1998, Ghaboussi, Pecknold, Zhang and HajAli 1998), strain softening material
models in reinforced concrete (Kaklauskus and Ghaboussi, 2000), rate
dependent material behavior (Jung and Ghaboussi, 2006a, 2006b), and hysteretic
behavior of materials (Yun 2006, Yun Ghaboussi and Elnashai 2008a, 2008b,
2008c).

6.1 Nested Adaptive Neural Networks (NANN)

Often, it is difficult to determine the number of nodes in the hidden layers in a
given problem. It was mentioned earlier that the size of the neural network is
related to the complexity of the information contained in the training data. At
present it is not possible to quantify the degree of complexity in the data. A
method for adaptive node generation in neural networks was proposed in an
article by Joghataie, Ghaboussi and Wu (1995). This method allows the training
to start with a neural network with few hidden layer nodes and adaptively add
new nodes to the hidden layers during the training, ending with a neural network
that has the necessary architecture to learn the information in the data. This
process is shown in Figure 6.

Figure 6. Adaptive node generation.

There are several steps in the adaptive node generation, illustrated in Figure

7. During the training the learning rate is monitored. The learning rate that is a
measure of the change in the output errors normally reduces during the training.
When the learning rate falls below a prescribed value, it is an indication that the
capacity of the neural network is reached. At this point one node is added to
each of the hidden layers. This creates a number of new connections that are
assigned random initial weights. The old connection weights are frozen for a

www.manaraa.com

208 J. Ghaboussi

number of epochs when the training resumes and only the new connection
weights are modified. This is based on the rationale that the new connection
weights are trained to learn the portion of the information that was not learned
by the old connection weights. After a number of epochs (either prescribed, or
adaptively determined by monitoring the learning rate) the old connections are
unfrozen and the training continues.

Figure 7, Process of adaptive node generation.

The nested part of “nested adaptive neural networks” deals with the

structure of the information in the training data. In most cases the information in
the training data can have a clear structure. This structure may not be obvious
from the data itself but it can be discerned from the process that was used to
generate the training data. In some situations the structure in the training data
can be exploited and used in the design of the neural network architecture, or in
designing a collection of neural networks.

An example of the structure of the information in the training data is the
nested structure; it is possible to recognize subsets of the data that have a clear
hierarchical nested structure. Starting from the lowest subset, each data subset is
in turn a subset of the next higher level data subset (see Ghaboussi Zhang Wu
and Pecknold 1997, Ghaboussi and Sidarta, 1998).

Consider the example of the training data in constitutive behavior of the
materials. In this case, one type of data hierarchy comes from the dimensional-
ity. The data from one-dimensional constitutive material behavior is a subset of
the data from two-dimensional constitutive material behavior that in turn is a
subset of the data from three dimensional material behavior. The same nested
structure is present in the information contained in the training data. If we
assume that the functions fj describing the material behavior in 1D, 2D,
axisymmetric, and 3D, belong to 1, 3, 4, and, 6 dimensional function spaces Fj.

 1j = fj (Jj) j = 1, 3, 4, 6

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 209

Then, these function spaces have a nested structure.

A similar type of nested structure is present in the information in the data

generated from time-independent and time-dependent material behavior. In this
case, the information on the time-independent material behavior is a subset of
the information on the time-dependent material behavior.

The nested structure of the information in the data can be reflected in the
structure of the neural networks. As many neural networks as the subsets can be
developed with the hierarchical relationship between those neural networks. A
base module neural network can be trained with the lowest level subset, in this
case the one-dimensional material behavior. Next a second level module can be
added to the base module that represents the information on the two-dimensional
material behavior that is not represented in the base module. The connections
between the second level module and the base module have to be one way
connections; there are connections from the second level module to the base
module, but no connections from the base module to the second level module.
The information on one-dimensional material behavior does not contribute to the
additional information needed for the two-dimensional behavior. This is the
reason behind the one way connection. Similar hierarchies will be present when
the third and fourth level modules are added to represent the axisymmetric and
the three-dimensional material behavior.

Another example of the nested structure of information in the data is in
modeling the path dependency of material behavior with history points. In the
first application of neural networks in constitutive modeling (see Ghaboussi,
Garrett and Wu, 1991) path dependency in loading and unloading was modeled
with three history points. When path dependency is not important, it is sufficient
to provide the current state of stresses and strains and the strains at the end of the
increment as input to obtain the state of stresses at the end of the increment.
This information is not sufficient when path dependency becomes important, for
instance, when unloading and reloading occurs. In this case, the material
behavior is influenced by the past history. In this case path dependency was
modeled by additionally providing the state of stresses and strains at three
history points. This was called the “three point model.”

The following equation shows the path dependent material behavior
modeled with history points. Function fjk relates the stress rate to strain rate,
where subscript j represents the dimension and subscript k represents the
number of history points.

fj K Fj

F1 L F3 L F4 L F6

www.manaraa.com

210 J. Ghaboussi

Functions fjk belong to function spaces Fjk that have a nested relationship.

A nested adaptive neural network for a three point model of a one-
dimensional material behavior is illustrated in Figure 8. Figure 8a shows the
adaptive training of the base module. The input to the base module consists of
the current state of stresses and strains and the strain increment. Figures 8b and
8c show the addition of the second and third history points and their adaptive
training. Each history module has only one-way connections to the previous
modules. The reason for the one-way connections is obvious in this case; the
past can influence the present, but the present has no influence on the past.

Nested adaptive neural networks were first applied to an example of one-
dimensional cyclic behavior of plain concrete (see Zhang, 1996). NANNs were
trained with the results of one experiment and the trained neural network was
tested with the results of another experiment performed at a different laboratory.
First, the base module was trained adaptively. As shown in the following
equation, the input of the neural network is strain and the output is stress
increment. Each of the two hidden layers started the adaptive training with 2
nodes and ended with four nodes.

The notation in this equation was introduced to describe both the

representation and the network architecture. The left hand side of the equation
shows the output of the neural network. The first part inside the square brackets
describes the input to the neural network and the second part describes the
network architecture.

Next, the first history point module was added and the resulting neural
network is shown in the following equation. The first history module had two
input nodes, no output node, and each of the two hidden layers started the
adaptive training with 2 nodes and ended with 12 nodes.

Fj,k L Fj,k+1
fj,k K Fj,k

1j = fjk (1j,0, Mj,0, 1j,-1, Mj,-1, …, 1j,-k, Mj,-k, J j)

 j = 1, 3, 4, 6 ; k = 0, 1, 2, …

�1n+1 = NN0 [Mn+1: 1, 2 – 4, 2 – 4, 1]

�1n+1 = NN1 [Mn, 1n, Mn+1: (1, 2), (2 – 4, 2 – 12),
(2 – 4, 2 – 12), (1)]

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 211

Figure 8. Nested adaptive neural network for material behavior in 1D

The performance of the neural network NN1 on the training and testing
experimental results is shown in Figure 9a.

www.manaraa.com

212 J. Ghaboussi

The following equation shows the NANN after the second history point was
added and adaptively trained.

In this case, the hidden layers in the second history module started the adaptive
training with 2 nodes and ended with 10 nodes. The performance of the NANN
NN2 with two history points is shown in Figure 9b.

The following equation shows the NANN after the third history point was
added and adaptively trained.

In this case, each of the two hidden layers in the third history module started the
adaptive training with 2 nodes and ended with 9 nodes. The performance of the
NANN NN3 with three history points is shown in Figure 9c.

The cyclic behavior of plain concrete shown in Figures 9a, 9b and 9c
clearly exhibits a strong path and history dependence. In order to capture this
history dependent material behavior, history points are needed and this is clearly
shown in Figures 9a, 9b and 9c by the fact that the performance of the NANN
improves with the addition of the new history points. The neural network NN3
with three history points appears to have learned the cyclic material behavior
with a reasonable level of accuracy. These figures also demonstrate that the
trained neural network has learned the underlying material behavior, not just a
specific curve; the trained neural network is able to predict the results of a
different experiment that was not included in the training data.

6.2 Neural Networks for Hysteretic Behavior of Materials

In the previous section it was demonstrated that by using the history points, such
as the three point model, it is possible to model the hysteretic behavior of
materials. In this section we will describe a new method for modeling the
hysteretic behavior of materials (see, Yun, 2006, Yun, Ghaboussi, Elnashai
2008a).

If we look at a typical stress-strain cycle, it is easy to see that the value of
strain is not sufficient to uniquely define the stress, and vice versa. We refer to
this as one-to-many mappings. Neural networks can not learn one-to-many
mappings. This can be remedied by introducing new variables at the input to

�1n+1 = NN2 [Mn, 1n, Mn-1, 1n-1, Mn+1: (1, 2, 2),
(2–4, 2–12, 2–10), (2 –4, 2–12, 2–10), (1)]

�1n+1 = NN3 [Mn, 1n, Mn-1, 1n-1, Mn-2, 1n-2, Mn+1: (1, 2, 2, 2),
 (2–4, 2–12, 2–10, 2–9),

(2 –4, 2–12, 2–10, 2–9), (1)]

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 213

Figure 9. Performance of NANN with one, two and

three history points (Zhang, 1996).

create a unique mapping between the input and output to the neural network.
The variable used in this case is given in the following equation:

 Kn = 1T

n-1 Mn

www.manaraa.com

214 J. Ghaboussi

This parameter strictly guarantees one-to-one mapping only in one-dimension.
However, our experience shows that it is also effective in multi-dimension. The
variable Kn is the sum of two quantities. The two parts of the hysteretic variable
are described in the following equations and illustrated in Figure 10.

The first variable Nn uniquely helps locate the point on the stress-strain diagram
or the current state of stresses and strains. The second variable �Kn indicates the
direction of the increment of strains.

Figure 10. Hysteretic variables on one-dimensional stress-strain diagram.

These two variables have been found to be effective in the modeling of the
hysteretic behavior of materials. They can be used on their own, or in
combination with one or two history points. A typical neural network material
model capable of learning the hysteretic behavior of materials is shown in
Figure 11 and its application is shown in Figures 12 and 13. The input to the
neural network consists of the current stresses and strains, hysteretic variables,
and the strains at the end of the increment. The output is the stresses at the end
of the increment.

�Kn = 1T
n-1 �Mn

Nn = 1T
n-1 Mn-1

Kn = Nn + �Kn

�

$

�

$n 1�$ n$

n 1��

n n 1 n 1� �? � � $

, n n 1 n$ �#O � � #$

�

$

�

$n 1�$ n$

n 1��

n n 1 n 1� �? � � $

, n n 1 n$ �#O � � #$

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 215

Figure 11. Neural network for hysteretic behavior of materials [Yun, 2006]

Figure 12. FE model of beam column connection subjected
to cyclic force [Yun 2006].

n
ij$ n 1

ij
� $ n 1

ij
� � n

,ij$? n
,ij$# O

n
ij�

… …

……

n
ij$ n 1

ij
� $ n 1

ij
� � n

,ij$? n
,ij$# O

n
ij�

… …

……

U 4

U 45

U 4

U 121
U 121

U 121

U 143

U 143
U 143

U 4

U 45

U 4

U 121
U 121

U 121

U 143

U 143
U 143

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6

Time step

La
te

ra
l l

oa
di

ng
(N

/m
m

)

Cyclic Lateral Force(Distributed Force;N/mm)

www.manaraa.com

216 J. Ghaboussi

Figure 13. Performance of the training neural network material model with
hysteretic variables (Yun 2006, Yun, Ghaboussi, Elnashai, 2008a).

-100

-80

-60

-40

-20

0

20

40

60

80

100

-0.010 -0.005 0.000 0.005 0.010 0.015

Strain

S
tre

ss
[S

12
](M

P
a)

S12(Simulated Cyclic Testing)
S12(NN Prediction: Epoch 20000)

-80

-60

-40

-20

0

20

40

60

80

-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

Strain

S
tre

ss
[S

22
](M

P
a)

S22(Simulated Cyclic Testing)

S22(NN Prediction: Epoch 20000)

-600

-400

-200

0

200

400

600

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

Strain

S
tre

ss
[S

11
](M

P
a)

S11(Simulated Cyclic Testing)
S11(NN Prediction;Epoch 20000)

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 217

6.3 Autoprogressive Algorithm and Self-learning Simulations (SelfSim)

In the early applications of neural networks in constitutive modeling they were
trained directly with the data from material tests. Constitutive modeling from the
material tests is an inverse problem. In this case the input (applied stresses) and
the output (measured strains) are known and the system that in this case is the
constitutive model needs to be determined. In the conventional mathematically
based methods this is done by developing a mathematical model that closely
matches the observed behavior. Of course, the mathematical models have to
conform to the conservation laws of mechanics. As we have discussed before, in
using neural networks we concentrate on the information on the material
behavior contained in the data generated from the material tests. The learning
capabilities of neural networks provide the means for extracting and storing the
information on material behavior directly from data generated by the material
tests.

The advantage of extracting the information on the material behavior
directly from the experimental results is that there is no need for idealization.
Moreover, since the data comes from the material itself, it is safe to assume that
it conforms to the conservation laws of mechanics. There are also disadvantages
that became clear very soon after the initial applications. Material tests are
designed to represent a material point. Consequently, the state of stresses and
strains within the sample must be as uniform as possible. The sample is
subjected to a stress path and all the points within the sample are assumed to
follow the same stress path. Therefore, the data generated from a material test
has information about the material behavior only along that stress path. The data
from one material test is not sufficient to train a robust neural network material
model. Information on the material behavior over the whole region of interest in
stress space is needed to train a robust neural network constitutive model with
generalization capabilities. This requires a series of specially designed material
tests with stress paths that reasonably cover the region of interest in the stress
space. This is not practical in most cases.

Material tests are not the only source of information on the behavior. There
are many other potential sources of data that contain information on material
behavior. The measured response of a system subjected to a known excitation
contains information on the constitutive behavior of the material (or materials)
in that system. An example is a structural test; the measured displacements of a
structure that is subjected to known forces contain information on the
constitutive properties of the materials within the structure. This is a more
complex inverse problem than the material tests; the forces and displacement are
the known input and output of the system and the constitutive properties of the
material within the structure are to be determined. Unlike material tests, which
ideally induce a uniform state of stress within the sample, structural tests induce
non-uniform states of stresses and strains within the sample. Since points in the

www.manaraa.com

218 J. Ghaboussi

specimen follow different stress paths, a single structural test potentially has far
more information on the material behavior than a material test in which all the
points follow the same stress path.

Extracting the information on the material properties from structural tests is
an extremely difficult problem with the conventional mathematically based
methods. This is probably the reason why it has not been attempted in the past.
On the other hand, soft computing methods are ideally suited for this type of
difficult inverse problem. The learning capabilities of a neural network offer a
solution to this problem. Autoprogressive algorithm is a method for training a
neural network to learn the constitutive properties of materials from structural
tests(see Ghaboussi, Pecknold, Zhang and HajAli,1998).

An autoprogressive algorithm is applied to a finite element model of the
structure being tested. Initially a neural network material model is pre-trained
with an idealized material behavior. Usually, linearly elastic material properties
are used as the initial material model. Sometimes it may be possible to use a
previously trained neural network as initial material model. The pre-trained or
previously trained neural network is then used to represent the material behavior
in a finite element model of the specimen in the structural test. The
autoprogressive method simulates the structural test through a series of load
steps. Two analyses are performed in each load step. The first analysis is a
standard finite element analysis, where the load increment is applied and the
displacements are computed. In the second analysis the measured displacements
are imposed. The stresses from the first analysis and the strains from the second
analysis are used to continue the training of the neural networks material model.
The stresses in the first analysis are closer to the true stresses since the first
analysis is approaching the condition of satisfying the equilibrium. Similarly, the
strains in the second analysis are closer to the true strains since it is approaching
the condition of satisfying compatibility. A number of iterations may be
required in each load step. The retrained neural network is then used as the
material model in the next load step. The process is repeated for all the load
steps and this is called one “pass”. Several passes may be needed for the neural
network to learn the material behavior. At that point, the two finite element
analyses with the trained neural network will produce the same results.

6.4 An Illustrative Example: A Truss Arch

The autoprogessive algorithm is illustrated with a three-dimensional truss
example, shown in Figure 14. This structure represents the left half of a
symmetric truss arch. The nodes at the right hand side have symmetric boundary
conditions and the nodes at the left hand side are fixed, representing the fixed
support condition.

It is assumed that the members of the truss are made from a hypothetical
material with nonlinear stress-strain relations shown in Figure 15. The objective

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 219

Figure 14. Three-dimensional truss example

of autoprogressive algorithm in this example is to train a neural network to learn
the nonlinear stress-strain relation shown in Figure 15 from the result of a
structural test. In this case the structural test consists of applying a single force P
at one node and measuring the displacement at the same point along the
direction of the applied load, as shown in Figure 14. The experiment is
simulated by analyzing the structure. The force-displacement curve from the
simulated structural test is shown in Figure 16.

Figure 15. Assumed member stress-strain relation

Stress-Strain

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

P, applied load
U, measured displacement

Plane of symmetry

Plane of fixed boundary conditions

www.manaraa.com

220 J. Ghaboussi

Figure 16. Force-displacement curve from simulated structural test.

Initially, the neural network is trained with linearly elastic behavior within a

narrow range of stresses and strains. This neural network is used in the self-
learning simulation. The load P and the displacement U are applied in
increments in the first and second finite element analyses (FEM-A and FEM-B)
and the results are used to retrain the neural network material model. A total of
10 passes are performed. At several stages during the self-learning simulation,
the partially trained neural network is used in a forward analysis simulation of
the structural test. Force-displacement relations at six stages during the self-
learning simulation are shown in Figure 17. Show in Figure 18 is the process of
the gradual learning of the material behavior. Points in this figure represent the
state of stress and strain in the structural members. After 10 passes the neural
network has learned the material behavior so that the forward analysis with the
trained neural network replicates the simulated structural test with sufficient
accuracy.

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 221

Figure 17. Force-displacement relations in the forward analyses with the neural
network material model at six stages during the autoprogressive training in the

self-learning simulation

pass 0 step 0

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 2 step 6

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 3 step 8

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 4 step 12

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 5 step 15

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

pass 10 step 30

0

1

2

3

4

5

6

7

8

9

10

-0.35-0.3-0.25-0.2-0.15-0.1-0.050

Displacement

Lo
ad

www.manaraa.com

222 J. Ghaboussi

Figure 18. Stress-strain relations in the forward analyses with the neural
network material model at six stages during the autoprogressive training

in the self-learning simulation

6.5 Autoprogressive Algorithm and Self-learning Simulations in
Structural Mechanics and in Geo-mechanics

The problem of determining the constitutive properties of material from
structural tests is more relevant with modern composite material. It is often not
feasible to perform comprehensive sets of material tests on composite materials.
However, structural tests on composite materials are far more common. An

pass 0 step 0

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

pass 2 step 6

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

pass 4 step 12

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

pass 5 step 15

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

pass 10 step 30

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

pass 3 step 8

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000
-0.015-0.013-0.011-0.009-0.007-0.005-0.003-0.0010.0010.0030.005

E11

S1
1

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 223

application of the Autoprogressive method to a composite plate with a hole is
presented in paper by Ghaboussi Pecknold Zhang and HajAli (1998).

The Autoprogressive algorithm has been successfully applied in self-
learning simulations in deep excavations in urban areas (see Hashash Marulando
Ghaboussi and Jung 2003, 2006), in modeling of the behavior of geo-materials
from non-uniform tests (see Sidarta and Ghaboussi, 1998; Fu Hashash Jung and
Ghaboussi, 2007; Hashash Fu Ghaboussi Lade and Saucier, 2009), in time
dependent behavior of concrete in segmented long span bridges (see Jung
Ghaboussi and Marulando, 2007), and in modeling of hysteretic behavior of
beam-column connections from the results of dynamic tests on frames (see Yun
Ghaboussi and Elnashai 2008b, 2008c).

6.6 Self-learning Simulations in Bio-medicine

Another broad area of application self-learning simulation with autoprogressive
algorithm is in bio-medicine and in bio-medical imaging. Direct in-vivo
experiments to determine constitutive properties of soft tissue are not currently
possible. However, minimally invasive in-vivo methods for measuring the
system response of soft tissue are possible. Self-learning simulation has been
successfully applied in determination of the constitutive properties of the human
cornea (see Kwon, 2006; Kwon Ghaboussi Pecknold and Hashash 2008, 2009).
The same method is also used in the accurate determination of Intra-ocular
Pressure (IOP). Accurate determination of IOP and constitutive properties of the
human cornea can be used in virtual laser surgery to individualize and optimize
the laser surgery procedure.

6.7 Self-learning Simulations in Complex Systems

The autoprogressive method has wider applications than material modeling from
structural tests. System response is dependent on the properties of its
components. In many cases it is not possible to determine the properties of the
components of the systems through experiments; such experiments many not be
possible. However, in most cases it is possible to determine the input/output
response of the system. The measured input and output of any system can be
used to develop a neural network model of the behavior of its components. The
requirement for the application of autoprogessive algorithm is that a numerical
modeling of the system be feasible so that the simulation of system response to
the input can be performed in the dual analyses similar to the self-learning
simulation in structural tests. The potential application of the autoprogressive
algorithm in characterization of the components of complex systems is described
in paper by Ghaboussi, Pecknold and Zhang, 1998.

www.manaraa.com

224 J. Ghaboussi

7. Inverse Problems in Engineering
Most engineering problems are inherently inverse problems. However, they are
seldom solved as inverse problems. They are only treated as inverse problems
on the rare occasions when they can be formulated as direct problems in highly
idealized and simplified forms. Nearly all the computer simulations with hard
computing methods, including finite element analyses, are direct or forward
problems, where a physical phenomenon is modeled and the response of the
system is computed. There are two classes of inverse problems. In one class of
inverse problems the model of the system and its output are known. The inverse
problem is then formulated to compute the input which produced the known
output. In the second class of inverse problems the input and the output of the
system are known, and the inverse problem is formulated to determine the
system model. This class of inverse problems is also referred to as system
identification.

An important characteristic of the inverse problems is that they often do not
have mathematically unique solutions. The measured output (response) of the
system may not contain sufficient information to uniquely determine the input to
the system. Similarly, the measured input and response of the system may not
contain enough information to uniquely identify the system, and there may be
many solutions which satisfy the problem.

Lack of unique solutions is one of the reasons why the mathematically
based methods are not suitable for inverse problems. On the other hand,
biological systems have evolved highly robust methods for solving the difficult
inverse problems encountered in nature. In fact, most of the computational
problems in biological systems are in the form of inverse problems. The
survival of the higher level organisms in the nature depends on their ability to
solve these inverse problems. The examples of these inverse problems are
recognition of their food, recognition of threats, and paths for their movements.
Nature's basic strategy for solving the inverse problems is to use imprecision
tolerant learning and reduction in disorder within a domain of interest.

A training data set can be used to train a forward neural network or an
inverse neural network. The input and output of the inverse neural network are
the same as the output and input, respectively, of the direct neural network. This
was demonstrated in the first application of neural networks in material
modeling (see Ghaboussi, Garrett and Wu, 1991).

When unique inverse relationship does exist, then both neural networks and
mathematically based methods can be used to model the inverse mapping.
However, when the inverse mapping is not unique, modeling with the
mathematically based methods becomes increasingly difficult, if not impossible.
On the other hand, neural network based methods can deal with the non-unique
inverse problems by using the learning capabilities of the neural networks. In
fact, this is how the biological systems solve the inverse problems, through

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 225

learning. Even if mathematically unique inverse mappings do not exist,
approximate (imprecision tolerant) inverse mappings may exist over limited
regions of domain and range. Neural networks use learning to establish
reasonable admissible inverse mappings that are valid over limited ranges of
these variables.

In the previous sections the inverse problem of constitutive modeling was
presented, including the autoprogressive algorithm in self-learning simulation.
Other examples of application of soft computing methods to inverse problems in
engineering from the work of the author and his co-workers will be briefly
described in this section. More details on these applications are available in the
references cited.

7.1 Inverse Problem of Structural Control

The objective of structural control is to minimize the motion of the structure
through one or more actuators that can perform various functions such as apply
forces to the structure or change the properties of some structural components.
The controller receives input signals (such as measured motion of the structure)
and sends a output signals to the actuators to accomplish the control objective.
This is a task that can be performed by a trained neural network. The method
for training of the neuro-controller is not often obvious. Depending on the
feasibility of the type of data acquisition, the training of the neural controller can
be accomplished in different ways. The neural network is learning the control
method – in the context of inverse problems it is learning the system model from
the input and output. However, in most cases the output that is the desired
actuator signal is not known.

In the first application of neural networks in structural control (see Nikzad,
Ghaboussi and Paul, 1996), it was possible in an experiment to send signals to
the actuator and measure the system response. This data was used to train an
inverse neural network so that the trained neural network could output a actuator
signal to counter the response of the uncontrolled system.

It is not always possible to perform experiments to measure the structural
response to actuator signals. In that case, the output of the neural controller is
not known but the desired response of the structure is known. A new method for
training of the neuro-controller was developed that involved the use of a pre-
trained emulator neural network (see Ghaboussi and Joghataie, 1995; Bani-Hani
and Ghaboussi, 1998a, 1998b; Bani-Hani Ghaboussi and Schneider, 1999a,
1999b).

The new method was verified in a number of experiments on control of
structural response when the structure is subjected to earthquake ground motion.
The results showed that the neural networks can be successfully used in
structural control. Moreover, the neuro-controller can also learn to compensate
for control system time-delays.

www.manaraa.com

226 J. Ghaboussi

The inverse problem of structural control can also be solved by genetic
algorithm (see Kim and Ghaboussi, 1999; Kim, 2000). In this case the controller
evolves to satisfy the control criterion.

7.2 Inverse Problem of Generating Artificial Spectrum Compatible
Accelerograms

Given an earthquake accelerogram, it is possible to compute its Fourier
spectrum or response spectrum. This can be considered the forward problem.
We consider the two inverse problems in this case; the input being either the
Fourier spectrum or the response spectrum and the output being the earthquake
accelerogram. Given a Fourier spectrum it is possible to uniquely determine the
earthquake accelerogram that produced it. The reason for the uniqueness in this
case is that no information is lost in the forward problem of going from the
accelerogram to the Fourier spectrum. On the other hand, information is lost in
the forward problem of going from accelerogram to response spectrum.
Therefore, given a response spectrum, it is not possible to uniquely determine
the accelerogram that produced it. This problem is of practical interest, since
earthquake response spectra are used in design.

The inverse problem of generating artificial earthquake accelerograms from
design response spectra is very similar to the inverse problem of recognizing
faces or voices. Although unique solution does not exist, we learn to recognize a
limited number of faces and voices. The same learning strategy can be used in
generating artificial earthquake accelerograms. The author and his co-workers
have developed a neural network based method for generating artificial
spectrum compatible accelerograms (see Lin, 1999; Ghaboussi and Lin, 1998;
Lin and Ghaboussi, 2001). The objective is to train a neural network with an
ensemble of recorded earthquake accelerograms and their computed response
spectra. The input to the neural network will be a vector of the discretised
ordinates of the response spectrum. The output of the neural network is the
vector of discretised ordinates of the real and imaginary parts of the Fourier
spectrum. As mentioned earlier, the accelerogram can then be uniquely
computed from the Fourier spectrum.

The neural networks are trained in two stages. First, a Replicator Neural
Network (RNN) is trained to compress the information content of the Fourier
spectra of the accelerograms in the training data sets. As shown in Figure 19 the
input and output of the RNN are the same. The middle hidden layer of RNN has
few nodes. The activations of the middle hidden layer nodes represent the
compressed data. It is obvious that the RNN is performing two distinct functions
of encoding and decoding in such a way that it can be separated into two neural
networks. The lower part of RNN (input layer to the middle hidden layer) can
be considered as an encoder neural network. Similarly the upper part of the

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 227

RNN (from the middle hidden layer to the output layer) can be considered as a
decoder neural network.

The upper part of the trained RNN is used in the accelerogram Generator
Neural Network (AGNN) shown in Figure 20. The lower part of the AGNN is
then trained with a number of recorded earthquake accelerograms. The
methodology has been extended to develop and train stochastic neural networks
which are capable of generating multiple accelerograms from a single input
design response spectrum (see Lin, 1999; Lin and Ghaboussi, 2001).

Figure 19. Replicator neural network

www.manaraa.com

228 J. Ghaboussi

Figure 20. Composite Accelerogram Generator Neural Network

7.3 Inverse Problem of Condition monitoring and damage detection in

bridges

Another obvious class of inverse problems is the condition monitoring and
damage detection from the measured response of the structure. Soft computing
methods again offer unique opportunities for dealing with this class of difficult
problems. The first application of neural networks in structural condition
monitoring was reported in [Wu Ghaboussi and Garrett, 1992]. It was shown
that it is possible to train a neural network to learn the structural response when
various states of damage, including no damage, are present in the structure. The
trained neural network was shown to be capable of indicating the location and

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 229

extent of the damage from the structural response during an earthquake. Neural
networks have also been applied in engineering diagnostics (see Ghaboussi and
Banan, 1994) and in damage detection and inspection in railways (see
Ghaboussi, Banan, and Florom, 1994; Chou, Ghaboussi, and Clark, 1998).

Application of genetic algorithm in bridge damage detection and condition
monitoring was reported in papers by Chou (2000), Chou and Ghaboussi (1997),
(1998), (2001). The bridge condition monitoring is formulated in the form of
minimizing the error between the measured response and the response computed
from a model of the bridge and in the process the condition of the bridge is
determined. The methodology was shown capable of determining the condition
of the bridge from the ambient response under normal traffic load. The
methodology was further refined by Limsamphancharon (2003). A form of fiber
optic sensing system was proposed for monitoring of the railway bridges under
normal train traffic loads. A practical method was proposed for detecting the
location and size of fatigue cracks in plate girders in railway bridges. A new
Dynamic Neighborhood Method genetic algorithm (DNM) was proposed (see
Limsamphancharon, 2003) that has the capability of simultaneously determining
multiple solutions for a problem. DNM was combined with a powerful genetic
algorithm called Implicit Redundant Representation GA (IRRGA) (see Raich
and Ghaboussi, 1997a) which was used in bridge condition monitoring.

7.4 Inverse Problem of Creative Structural Design

Engineering design is probably the most fundamental engineering task. If we
stay in the domain of structural engineering and consider the example of
structural design, we can define the inverse problem as shown in Figure 21. The
input is loads and design specifications, and the output is the code requirements,
safety, serviceability and aesthetic. The objective is to determine a structural
design that can carry the loads and meet the design specification while satisfying
the output. If we pose this as an inverse problem, the methodology should
directly seek a solution. Such a methodology currently does not exist. Instead,
this problem is solved through a series of trial and errors; each trial constituting
a forward problem.

Figure 21. Inverse problem of structural design

Similar to the other engineering inverse problems, engineering design does

not have a unique solution. A truly unconstrained inverse problem of
engineering design is a search in an infinite dimensional vector space. There are

Engineering design Loads, design

specifications

Code requirements,
safety, serviceability,

aesthetics

www.manaraa.com

230 J. Ghaboussi

no optimum solutions and there are many solutions that will satisfy the input and
output of the problem. As we constrain the problem, we also reduce the
dimensions of the vector space where the search for the design takes place. A
fully constrained design problem is reduced to an optimization problem that is a
search in a finite dimensional vector space. Mathematically based hard
computing methods have been used in optimization problems. It is far more
difficult for the hard computing methods to deal with the unconstrained design
problems.

As an example, we will consider the problem of designing a bridge to span
a river. Soft computing methods can be used to solve this problem in a number
of ways. The spectrum of all possible formulations is bound by the fully
unconstrained design problem at one extreme and the fully constrained
optimization problem at the other extreme.

In this case the fully uncontained design problem can be defined as
designing the bridge to satisfy the design specifications and code requirements,
with no other constraints. The methodology deployed in this open ended design
will have to determine the bridge type, materials, bridge geometry and member
properties. The bridge type may be one of the known bridge types or it may be a
new, as yet unknown, bridge type and material.

In the fully constrained optimization problem the bridge type, configuration
and geometry are known and the methodology is used to determine the member
section properties. It is clear that this is an optimization problem, and it is a
search in a finite dimensional vector space. This problem has at least one, and
possibly multiple optimum solutions.

The fully unconstrained design takes place in a high dimensional vector
space. If the search is in an infinite dimensional vector space, then there may be
an infinite number of solutions and no optimum solution. As we constrain the
problem, we reduce the dimension of the space where the search for the solution
takes place. In the limit we have the fully constrained optimization problem.

Genetic algorithm and evolutionary methods have been extensively used at
the lower end of this spectrum, in the fully constrained optimization problems.
However, genetic algorithm is very versatile and powerful; it can be formulated
for use in the unconstrained design problem. Two examples of the application of
genetic algorithm in the unconstrained design are given in (Shrestha, 1998;
Shrestha and Ghaboussi, 1997; 1998) and (Raich, 1998, Raich and Ghaboussi,
1997a, 1997b, 1998, 2000a, 2000b, 2001).

In (Shrestha 1998; Shrestha and Ghaboussi 1997, 1998) a truss is to be
designed for a span to carry a given load. The only constraint is that the truss has
to be within a rectangular region of the space with a horizontal dimension of the
span and a specified height. No other constraints are applied. A special
formulation is developed for this problem that allows the evolution of nodes and
members of the truss. Creative designs evolve after about 5000 generations. The
evolution goes through three distinct stages. In the first stage of about 1000

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 231

generations, search for a truss configuration takes place. In this stage, the cost
and the disorder in the system remain high. The second stage begins with the
beginning of finding of a possible solution and it is characterized by a rapid
decline in the cost and the disorder. In the third stage the configuration is
finalized and the members are optimized. The cost and the disorder decline
slowly in the third stage. Since the configuration changes little in the third stage,
genetic algorithm is in fact solving an optimization problem.

In the above mentioned papers by Raich and Raich and Ghaboussi genetic
algorithm is formulated for solving the unconstrained design problem of a
multistory plane frame to carry the dead loads, live loads and wind load, and to
satisfy all the applicable code requirements. The only constraints in this problem
are the specified horizontal floors and the rectangular region bounding the
frame. Except the horizontal members supporting the floors, no other
restrictions were imposed on the location and orientation of the members. A
special form of genetic algorithm that allows for implicit representation and
redundancy in the genes was developed and used in this problem (see Raich and
Ghaboussi, 1997a). It is important to note that since the problem has multiple
solutions, each time the process starts from a random initial condition it may
lead to a completely different solution.

This formulation led to evolution of highly creative and unexpected frame
designs. In some designs the main load carrying mechanism was through an arch
embedded in the frame, while in others it was through a truss that was embedded
in the frame. It is known that arches and trusses are more efficient load carrying
structures than the frames.

In both of the examples cited above, genetic algorithm was formulated and
used as a direct method of solving the inverse problem of design, not as a
method of optimization. As was mentioned earlier, design includes optimization
in a wider search for solution. Both examples also demonstrate that evolutionary
methods are capable of creative designs. One of the objectives of undertaking
these research projects was to find out whether evolution, in the form used in
genetic algorithm, was capable of creative design. The answer was a resounding
affirmative.

An important point in the two examples of engineering design was the role
of redundancy in genetic codes. Although simple genetic algorithm was used in
the first example, the formulation was such that it resulted in large segments of
genetic code being redundant at any generation. In the second example Implicit
Redundant Representation Genetic Algorithm (see Raich and Ghaboussi, 1997)
was used, and this algorithm allows redundant segments in the genetic code.
Redundancy appears to have played an important role in the successful
application of genetic algorithm to these difficult inverse problems.

IRRGA has also been applied in form finding and design of tensegrity
structures (see Chang, 2006). The stable geometry of a tensegrity structure is the
result of internal tensile and compressive member forces balancing each other

www.manaraa.com

232 J. Ghaboussi

and maintaining the geometry of the structure. Some forms of tensegrity
structures are well known. Generally, finding the form of tensegrity structures is
a difficult task and no methods are currently available for form finding and
design of this class of structures. IRRGA was successfully applied to this task
and details are available in (Chang, 2006).

References
Bani-Hani, K. and Ghaboussi, J. (1998a). Nonlinear structural control using

neural networks. Journal of Engineering Mechanics Division, ASCE 124:
319-327.

Bani-Hani, K. and Ghaboussi, J. (1998b). Neural networks for structural control
of a benchmark problem: Active tendon system. International Journal for
Earthquake Engineering and Structural Dynamics 27:1225-1245.

Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999a). Experimental study of
identification and structural control using neural network: I. Identification.
International Journal for Earthquake Engineering and Structural Dynamics
28:995-1018.

Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999b). Experimental study of
identification and structural control using neural network: II. Control.
International Journal for Earthquake Engineering and Structural Dynamics
28:1019-1039.

Chang, Y.-K. (2006). Evolutionary Based Methodology for Form-finding and
Design of Tensegrity Structures. PhD thesis, Dept. of Civil and
Environmental Engineering, Univ. of Illinois at Urbana-Champaign,
Urbana, Illinois.

Chou, J.-H. (2000). Study of Condition Monitoring of Bridges Using Genetic
Algorithm. PhD thesis, Dept. of Civil and Environmental Engineering, Univ.
of Illinois at Urbana-Champaign, Urbana, Illinois.

Chou, J.-H. and Ghaboussi, J. (1997). Structural damage detection and
identification using genetic algorithm. Proceedings, International
Conference on Artificial Neural Networks in Engineering, ANNIE. St. Louis,
Missouri.

Chou, J.-H. and Ghaboussi, J. (1998). Studies in bridge damage detection using
genetic algorithm. Proceedings, Sixth East Asia-Pacific Conference on
Structural Engineering and Construction (EASEC6). Taiwan.

Chou J. H. and Ghaboussi, J. (2001). Genetic algorithm in structural damage
detection. International Journal of Computers and Structures 79:1335-1353.

Chou, J.-H., Ghaboussi, J. and Clark, R. (1998). Application of neural networks
to the inspection of railroad rail. Proceedings, Twenty-Fifth Annual
Conference on Review of Progress in Quantitative Nondestructive
Evaluation. Snowbird Utah.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 233

Fu, Q., Hashash, Y. M. A., Jung, S., and Ghaboussi, J. (2007). Integration of
laboratory testing and constitutive modeling of soils. Computer and
Geotechnics 34: 330-345.

Ghaboussi, J. (1992a). Potential applications of neuro-biological computational
models in geotechnical engineering. Proceedings, International Conference
on Numerical Models in Geotechnical Engineering, NUMOG IV. Swansea,
UK

Ghaboussi, J. (1992b). Neuro-biological computational models with learning
capabilities and their applications in geomechanical modeling. Proceedings,
Workshop on Recent Accomplishments and Future Trends in Geomechanics
in the 21st Century. Norman, Oklahoma.

Ghaboussi, J. (2001) Biologically Inspired Soft Computing Methods in
Structural Mechanics and Engineering, International Journal of Structural
Engineering and Mechanics 11:485-502.

Ghaboussi, J. and Banan, M.R. (1994). Neural networks in engineering
diagnostics, Proceedings, Earthmoving Conference, Society of Automotive
Engineers, Peoria, Illinois, SAE Technical Paper No. 941116.

Ghaboussi, J., Banan, M.R. and Florom, R. L. (1994). Application of neural
networks in acoustic wayside fault detection in railway engineering.
Proceedings, World Congress on Railway Research. Paris, France.

Ghaboussi, J., Garrett, Jr., J.H. and Wu, X. (1990). Material modeling with
neural networks. Proceedings, International Conference on Numerical
Methods in Engineering: Theory and Applications. Swansea, U.K.

Ghaboussi, J., Garrett, J.H. and Wu, X. (1991). Knowledge-based modeling of
material behavior with neural networks. Journal of Engineering Mechanics
Division, ASCE 117:132 – 153.

Ghaboussi, J. and Joghataie, A. (1995). Active control of structures using Neural
networks. Journal of Engineering mechanics Division, ASCE 121: 555- 567.

Ghaboussi, J., Lade, P.V. and Sidarta, D.E. (1994). Neural network based
modeling in geomechanics. Proceedings, International Conference on
Numerical Methods and Advances in Geomechanics.

Ghaboussi, J. and Lin, C.-C.J. (1998). A new method of generating earthquake
accelerograms using neural networks. International Journal for Earthquake
Engineering and Structural Dynamics 27:377-396.

Ghaboussi, J., Pecknold, D.A., Zhang, M. and HajAli, R. (1998). Auto-
progressive training of neural network constitutive models. International
Journal for Numerical Methods in Engineering 42:105-126.

Ghaboussi, J., Pecknold D.A. and Zhang, M. (1998). Autoprogressive training of
neural networks in complex systems. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Ghaboussi, J. and Sidarta, D.E. (1998). A new nested adaptive neural network
for modeling of constitutive behavior of materials. International Journal of
Computer and Geotechnics 22: 29-51.

www.manaraa.com

234 J. Ghaboussi

Ghaboussi J. and Wu, X. (1998). Soft computing with neural networks for
engineering applications: Fundamental issues and adaptive approaches.
International Journal of Structural Engineering and Mechanics 8: 955 -969.

Ghaboussi, J., Zhang, M., Wu X. and Pecknold, D.A. (1997). Nested adaptive
neural networks: A new architecture. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Gashash, Y.M.A., Jung, S. and Ghaboussi, J. (2004). Numerical implementation
of a neural networks based material model in finite element. International
Journal for Numerical Methods in Engineering 59:989-1005.

Hashash, Y.M.A., Marulanda, C. Ghaboussi, J. and Jung, S. (2003). Systematic
update of a deep excavation model using field performance data”, Computers
and Geotechnics 30:477-488.

Hashash, Y.M.A., Marulando, C., Ghaboussi, J. and Jung, S. (2006). Novel
approach to integration of numerical modeling and field observation for deep
excavations. Journal of Geotechnical and Geo-environmental Engineering,
ASCE 132: 1019-1031.

Hashash, Y.M.A., Fu, Q.-W., Ghaboussi, J., Lade, P. V. and Saucier, C. (2009).
Inverse analysis based interpretation of sand behavior from triaxial shear
tests subjected to full end restraint. Canadian Geotechnical Journal, in press.

Joghataie, A., Ghaboussi, J. and Wu, X. (1995). Learning and architecture
determination through automatic node generation. Proceedings,
International Conference on Artificial neural Networks in Engineering.
ANNIE. St Louis

Jung. S.-M. and Ghaboussi, J. (2006a). Neural network constitutive model for
rate-dependent materials, Computer and Sstructures 84:955-963.

Jung. S-M and Ghaboussi, J. (2006b). Characterizing rate-dependent material
behaviors in self-learning simulation. Computer Methods in Applied
Mechanics and Engineering 196:608-619.

Jung, S.-M., Ghaboussi, J. and Kwon, S.-D. (2004). Estimation of aero-elastic
parameters of bridge decks using neural networks. Journal of Engineering
Mechanics Division, ASCE 130:1356 – 1364.

Jung S-M, Ghaboussi J. and Marulanda, C. (2007). Field calibration of time-
dependent behavior in segmental bridges using self-learning simulations.
Engineering Structures 29:2692-2700.

Kaklauskas, G. and Ghaboussi, J. (2000). Concrete stress-strain relations from
R/C beam tests. Journal of Structural Engineering, ASCE 127, No. 1.

Kim, Y.-J. (2000). Active Control of Structures Using Genetic Algorithm. PhD
thesis, Dept. of Civil and Environmental Engineering, Univ. of Illinois at
Urbana-Champaign. Urbana, Illinois

Kim, Y. J. and Ghaboussi, J. (1999). A new method of reduced order feedback
control using genetic algorithm. International Journal for Earthquake
Engineering and Structural Dynamics 28: 193-212.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 235

Kwon T.-H (2006) Minimally Invasive Characterization and Intraocular
Pressure Measurement via Numerical Simulation of Human Cornea. PhD
thesis, Dept. of Civil and Environmental Engineering, Univ. of Illinois at
Urbana-Champaign. Urbana, Illinois.

Kwon, T.-H. Ghaboussi, J., Pecknold, D. A. and Hashash, Y.M.A. (2008).
Effect of cornea stiffness on measured intraocular pressure. Journal of
Biomechanics 41:1707-1713.

Kwon, T.-H. Ghaboussi, J., Pecknold, D. A. and Hashash, Y.M.A. (2009). Role
of cornea biomechanical properties in applanation tonometry measurements.
Journal of Refractive Surgery, in press

Lin, C.-C. J. (1999). A neural network based methodology for generating
spectrum compatible earthquake accelerograms. PhD thesis, Dept. of Civil
and Environmental Engineering, Univ. of Illinois at Urbana-Champaign.
Urbana, Illinois.

Lin C.-C. J. and Ghaboussi, J. (2001). Generating multiple spectrum compatible
accelrograms using neural networks. International Journal Earthquake
Engineering and Structural Dynamics 30:1021-1042.

Limsamphancharon, N. (2003) Condition Monitoring of Structures by Using
Ambient Dynamic Responses. PhD thesis, Dept. of Civil and Environmental
Engineering, Univ. of Illinois at Urbana-Champaign.Urbana, Illinois.

Nikzad, K., Ghaboussi, J. and Paul, S.L. (1996). A study of actuator dynamics
and delay compensation using a neuro-controller. Journal of Engineering
Mechanics Division, ASCE 122:966-975.

Raich, Anne M. (1998). An Evolutionary Based Methodology for Representing
and Evolving Structural Design Solutions. PhD thesis, Dept. of Civil and
Environmental Engineering, Univ. of Illinois at Urbana-Champaign. Urbana,
Illinois.

Raich, A. M. and Ghaboussi, J. (1997a). Implicit Representation in Genetic
Algorithm Using Redundancy. International Journal of Evolutionary
Computing 5, No. 3.

Raich, A. M. and Ghaboussi, J. (1997b). Autogenesis and Redundancy in
Genetic Algorithm Representation. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Raich, A.M. and Ghaboussi, J. (1998). Evolving design solutions by
transforming the design environment. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Raich, A. M. and Ghaboussi, J. (2000a). Evolving structural design solutions
using an implicit redundant genetic algorithm. Journal of Structural and
Multi-disciplinary Optimization 20:222-231.

Raich, A. M. and Ghaboussi, J., (2000b). Applying the implicit redundant
representation genetic algorithm. In Lance Chambers , ed, Practical
Handbook of Genetic Algorithm, vol. 1. Applications, Ch.9 Unstructured
Problem Domain. Chapman&Hall/CRC Publishers.

www.manaraa.com

236 J. Ghaboussi

Raich, A.M., and Ghaboussi, J. (2001) “Evolving the topology and geometry of
frame structures during optimization. Structural Optimization 20:222-231.

Sidarta, D.E. and Ghaboussi, J. (1998). Modeling constitutive behavior of
materials from non-uniform material tests. International Journal of
Computer and Geotechnics 22, No. 1.

Shrestha, S.M. (1998). Genetic Algorithm Based Methodology for Unstructured
Design of Skeletal Structures. PhD thesis, Dept. of Civil and Environmental
Engineering, Univ. of Illinois at Urbana-Champaign. Urbana, Illinois

Shrestha, S.M. and Ghaboussi, J. (1997). Genetic algorithm in structural shape
design and optimization. Proceedings, 7th International Conference on
Computing in Civil and Building Engineering (ICCCBE-VII). Seoul, South
Korea

Shrestha, S.M. and Ghaboussi, J. (1998). Evolution of optimal structural shapes
using genetic algorithm. Journal of Structural Engineering, ASCE. 124:1331
-1338.

Wu, X. (1991). Neural Network Based Material Modeling. PhD thesis, Dept. of
Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign. Urbana, Illinois

Wu, X. and Ghaboussi, J. (1993). Modeling unloading and cyclic behavior of
concrete with adaptive neural networksn. Proceedings, APCOM'93, 2nd
Asian-Pacific Conference on Computational Mechanics.Sydney Australia

Wu, X., Ghaboussi, J. and Garrett, J.H. (1992). Use of neural networks in
detection of structural damage. Computers and Structures, 42:649-660.

Yun, G.-J., (2006) Modeling of Hysteretic Behavior of Beam-column
Connections Based on Self-learning Simulations. PhD thesis, Dept. of Civil
and Environmental Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Yun G, J, Ghaboussi J. and Elnashai, A.S. (2008a). A New Neural Network
Based Model for Hysteretic Behavior of Materials. International Journal for
Numerical Methods in Engineering 73:447-469.

Yun G.J, Ghaboussi J. and Elnashai, A.S. (2008b). Self-learning simulation
method for inverse nonlinear modeling of cyclic behavior of connections,
Computer Methods in Applied Mechanics and Engineering 197:2836-2857.

Yun G.J. Ghaboussi J. and Elnashai, A.S. (2008c). A design-based hysteretic
model for beam-column connections. International Journal of Earthquake
Engineering and Structural Dynamics. 37:535-555.

Zhang, M. (1996). Determination of neural network material models from
structural tests. PhD thesis, Dept. of Civil and Environmental Engineering,
University of Illinois at Urbana-Champaign. Urbana, Illinois.

www.manaraa.com

232 J. Ghaboussi

and maintaining the geometry of the structure. Some forms of tensegrity
structures are well known. Generally, finding the form of tensegrity structures is
a difficult task and no methods are currently available for form finding and
design of this class of structures. IRRGA was successfully applied to this task
and details are available in (Chang, 2006).

References
Bani-Hani, K. and Ghaboussi, J. (1998a). Nonlinear structural control using

neural networks. Journal of Engineering Mechanics Division, ASCE 124:
319-327.

Bani-Hani, K. and Ghaboussi, J. (1998b). Neural networks for structural control
of a benchmark problem: Active tendon system. International Journal for
Earthquake Engineering and Structural Dynamics 27:1225-1245.

Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999a). Experimental study of
identification and structural control using neural network: I. Identification.
International Journal for Earthquake Engineering and Structural Dynamics
28:995-1018.

Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999b). Experimental study of
identification and structural control using neural network: II. Control.
International Journal for Earthquake Engineering and Structural Dynamics
28:1019-1039.

Chang, Y.-K. (2006). Evolutionary Based Methodology for Form-finding and
Design of Tensegrity Structures. PhD thesis, Dept. of Civil and
Environmental Engineering, Univ. of Illinois at Urbana-Champaign,
Urbana, Illinois.

Chou, J.-H. (2000). Study of Condition Monitoring of Bridges Using Genetic
Algorithm. PhD thesis, Dept. of Civil and Environmental Engineering, Univ.
of Illinois at Urbana-Champaign, Urbana, Illinois.

Chou, J.-H. and Ghaboussi, J. (1997). Structural damage detection and
identification using genetic algorithm. Proceedings, International
Conference on Artificial Neural Networks in Engineering, ANNIE. St. Louis,
Missouri.

Chou, J.-H. and Ghaboussi, J. (1998). Studies in bridge damage detection using
genetic algorithm. Proceedings, Sixth East Asia-Pacific Conference on
Structural Engineering and Construction (EASEC6). Taiwan.

Chou J. H. and Ghaboussi, J. (2001). Genetic algorithm in structural damage
detection. International Journal of Computers and Structures 79:1335-1353.

Chou, J.-H., Ghaboussi, J. and Clark, R. (1998). Application of neural networks
to the inspection of railroad rail. Proceedings, Twenty-Fifth Annual
Conference on Review of Progress in Quantitative Nondestructive
Evaluation. Snowbird Utah.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 233

Fu, Q., Hashash, Y. M. A., Jung, S., and Ghaboussi, J. (2007). Integration of
laboratory testing and constitutive modeling of soils. Computer and
Geotechnics 34: 330-345.

Ghaboussi, J. (1992a). Potential applications of neuro-biological computational
models in geotechnical engineering. Proceedings, International Conference
on Numerical Models in Geotechnical Engineering, NUMOG IV. Swansea,
UK

Ghaboussi, J. (1992b). Neuro-biological computational models with learning
capabilities and their applications in geomechanical modeling. Proceedings,
Workshop on Recent Accomplishments and Future Trends in Geomechanics
in the 21st Century. Norman, Oklahoma.

Ghaboussi, J. (2001) Biologically Inspired Soft Computing Methods in
Structural Mechanics and Engineering, International Journal of Structural
Engineering and Mechanics 11:485-502.

Ghaboussi, J. and Banan, M.R. (1994). Neural networks in engineering
diagnostics, Proceedings, Earthmoving Conference, Society of Automotive
Engineers, Peoria, Illinois, SAE Technical Paper No. 941116.

Ghaboussi, J., Banan, M.R. and Florom, R. L. (1994). Application of neural
networks in acoustic wayside fault detection in railway engineering.
Proceedings, World Congress on Railway Research. Paris, France.

Ghaboussi, J., Garrett, Jr., J.H. and Wu, X. (1990). Material modeling with
neural networks. Proceedings, International Conference on Numerical
Methods in Engineering: Theory and Applications. Swansea, U.K.

Ghaboussi, J., Garrett, J.H. and Wu, X. (1991). Knowledge-based modeling of
material behavior with neural networks. Journal of Engineering Mechanics
Division, ASCE 117:132 – 153.

Ghaboussi, J. and Joghataie, A. (1995). Active control of structures using Neural
networks. Journal of Engineering mechanics Division, ASCE 121: 555- 567.

Ghaboussi, J., Lade, P.V. and Sidarta, D.E. (1994). Neural network based
modeling in geomechanics. Proceedings, International Conference on
Numerical Methods and Advances in Geomechanics.

Ghaboussi, J. and Lin, C.-C.J. (1998). A new method of generating earthquake
accelerograms using neural networks. International Journal for Earthquake
Engineering and Structural Dynamics 27:377-396.

Ghaboussi, J., Pecknold, D.A., Zhang, M. and HajAli, R. (1998). Auto-
progressive training of neural network constitutive models. International
Journal for Numerical Methods in Engineering 42:105-126.

Ghaboussi, J., Pecknold D.A. and Zhang, M. (1998). Autoprogressive training of
neural networks in complex systems. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Ghaboussi, J. and Sidarta, D.E. (1998). A new nested adaptive neural network
for modeling of constitutive behavior of materials. International Journal of
Computer and Geotechnics 22: 29-51.

www.manaraa.com

234 J. Ghaboussi

Ghaboussi J. and Wu, X. (1998). Soft computing with neural networks for
engineering applications: Fundamental issues and adaptive approaches.
International Journal of Structural Engineering and Mechanics 8: 955 -969.

Ghaboussi, J., Zhang, M., Wu X. and Pecknold, D.A. (1997). Nested adaptive
neural networks: A new architecture. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Gashash, Y.M.A., Jung, S. and Ghaboussi, J. (2004). Numerical implementation
of a neural networks based material model in finite element. International
Journal for Numerical Methods in Engineering 59:989-1005.

Hashash, Y.M.A., Marulanda, C. Ghaboussi, J. and Jung, S. (2003). Systematic
update of a deep excavation model using field performance data”, Computers
and Geotechnics 30:477-488.

Hashash, Y.M.A., Marulando, C., Ghaboussi, J. and Jung, S. (2006). Novel
approach to integration of numerical modeling and field observation for deep
excavations. Journal of Geotechnical and Geo-environmental Engineering,
ASCE 132: 1019-1031.

Hashash, Y.M.A., Fu, Q.-W., Ghaboussi, J., Lade, P. V. and Saucier, C. (2009).
Inverse analysis based interpretation of sand behavior from triaxial shear
tests subjected to full end restraint. Canadian Geotechnical Journal, in press.

Joghataie, A., Ghaboussi, J. and Wu, X. (1995). Learning and architecture
determination through automatic node generation. Proceedings,
International Conference on Artificial neural Networks in Engineering.
ANNIE. St Louis

Jung. S.-M. and Ghaboussi, J. (2006a). Neural network constitutive model for
rate-dependent materials, Computer and Sstructures 84:955-963.

Jung. S-M and Ghaboussi, J. (2006b). Characterizing rate-dependent material
behaviors in self-learning simulation. Computer Methods in Applied
Mechanics and Engineering 196:608-619.

Jung, S.-M., Ghaboussi, J. and Kwon, S.-D. (2004). Estimation of aero-elastic
parameters of bridge decks using neural networks. Journal of Engineering
Mechanics Division, ASCE 130:1356 – 1364.

Jung S-M, Ghaboussi J. and Marulanda, C. (2007). Field calibration of time-
dependent behavior in segmental bridges using self-learning simulations.
Engineering Structures 29:2692-2700.

Kaklauskas, G. and Ghaboussi, J. (2000). Concrete stress-strain relations from
R/C beam tests. Journal of Structural Engineering, ASCE 127, No. 1.

Kim, Y.-J. (2000). Active Control of Structures Using Genetic Algorithm. PhD
thesis, Dept. of Civil and Environmental Engineering, Univ. of Illinois at
Urbana-Champaign. Urbana, Illinois

Kim, Y. J. and Ghaboussi, J. (1999). A new method of reduced order feedback
control using genetic algorithm. International Journal for Earthquake
Engineering and Structural Dynamics 28: 193-212.

www.manaraa.com

Neural Networks in Computational Mechanics and Engineering 235

Kwon T.-H (2006) Minimally Invasive Characterization and Intraocular
Pressure Measurement via Numerical Simulation of Human Cornea. PhD
thesis, Dept. of Civil and Environmental Engineering, Univ. of Illinois at
Urbana-Champaign. Urbana, Illinois.

Kwon, T.-H. Ghaboussi, J., Pecknold, D. A. and Hashash, Y.M.A. (2008).
Effect of cornea stiffness on measured intraocular pressure. Journal of
Biomechanics 41:1707-1713.

Kwon, T.-H. Ghaboussi, J., Pecknold, D. A. and Hashash, Y.M.A. (2009). Role
of cornea biomechanical properties in applanation tonometry measurements.
Journal of Refractive Surgery, in press

Lin, C.-C. J. (1999). A neural network based methodology for generating
spectrum compatible earthquake accelerograms. PhD thesis, Dept. of Civil
and Environmental Engineering, Univ. of Illinois at Urbana-Champaign.
Urbana, Illinois.

Lin C.-C. J. and Ghaboussi, J. (2001). Generating multiple spectrum compatible
accelrograms using neural networks. International Journal Earthquake
Engineering and Structural Dynamics 30:1021-1042.

Limsamphancharon, N. (2003) Condition Monitoring of Structures by Using
Ambient Dynamic Responses. PhD thesis, Dept. of Civil and Environmental
Engineering, Univ. of Illinois at Urbana-Champaign.Urbana, Illinois.

Nikzad, K., Ghaboussi, J. and Paul, S.L. (1996). A study of actuator dynamics
and delay compensation using a neuro-controller. Journal of Engineering
Mechanics Division, ASCE 122:966-975.

Raich, Anne M. (1998). An Evolutionary Based Methodology for Representing
and Evolving Structural Design Solutions. PhD thesis, Dept. of Civil and
Environmental Engineering, Univ. of Illinois at Urbana-Champaign. Urbana,
Illinois.

Raich, A. M. and Ghaboussi, J. (1997a). Implicit Representation in Genetic
Algorithm Using Redundancy. International Journal of Evolutionary
Computing 5, No. 3.

Raich, A. M. and Ghaboussi, J. (1997b). Autogenesis and Redundancy in
Genetic Algorithm Representation. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Raich, A.M. and Ghaboussi, J. (1998). Evolving design solutions by
transforming the design environment. Proceedings, International Conference
on Artificial Neural Networks in Engineering, ANNIE. St. Louis, Missouri.

Raich, A. M. and Ghaboussi, J. (2000a). Evolving structural design solutions
using an implicit redundant genetic algorithm. Journal of Structural and
Multi-disciplinary Optimization 20:222-231.

Raich, A. M. and Ghaboussi, J., (2000b). Applying the implicit redundant
representation genetic algorithm. In Lance Chambers , ed, Practical
Handbook of Genetic Algorithm, vol. 1. Applications, Ch.9 Unstructured
Problem Domain. Chapman&Hall/CRC Publishers.

www.manaraa.com

236 J. Ghaboussi

Raich, A.M., and Ghaboussi, J. (2001) “Evolving the topology and geometry of
frame structures during optimization. Structural Optimization 20:222-231.

Sidarta, D.E. and Ghaboussi, J. (1998). Modeling constitutive behavior of
materials from non-uniform material tests. International Journal of
Computer and Geotechnics 22, No. 1.

Shrestha, S.M. (1998). Genetic Algorithm Based Methodology for Unstructured
Design of Skeletal Structures. PhD thesis, Dept. of Civil and Environmental
Engineering, Univ. of Illinois at Urbana-Champaign. Urbana, Illinois

Shrestha, S.M. and Ghaboussi, J. (1997). Genetic algorithm in structural shape
design and optimization. Proceedings, 7th International Conference on
Computing in Civil and Building Engineering (ICCCBE-VII). Seoul, South
Korea

Shrestha, S.M. and Ghaboussi, J. (1998). Evolution of optimal structural shapes
using genetic algorithm. Journal of Structural Engineering, ASCE. 124:1331
-1338.

Wu, X. (1991). Neural Network Based Material Modeling. PhD thesis, Dept. of
Civil and Environmental Engineering, University of Illinois at Urbana-
Champaign. Urbana, Illinois

Wu, X. and Ghaboussi, J. (1993). Modeling unloading and cyclic behavior of
concrete with adaptive neural networksn. Proceedings, APCOM'93, 2nd
Asian-Pacific Conference on Computational Mechanics.Sydney Australia

Wu, X., Ghaboussi, J. and Garrett, J.H. (1992). Use of neural networks in
detection of structural damage. Computers and Structures, 42:649-660.

Yun, G.-J., (2006) Modeling of Hysteretic Behavior of Beam-column
Connections Based on Self-learning Simulations. PhD thesis, Dept. of Civil
and Environmental Engineering, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Yun G, J, Ghaboussi J. and Elnashai, A.S. (2008a). A New Neural Network
Based Model for Hysteretic Behavior of Materials. International Journal for
Numerical Methods in Engineering 73:447-469.

Yun G.J, Ghaboussi J. and Elnashai, A.S. (2008b). Self-learning simulation
method for inverse nonlinear modeling of cyclic behavior of connections,
Computer Methods in Applied Mechanics and Engineering 197:2836-2857.

Yun G.J. Ghaboussi J. and Elnashai, A.S. (2008c). A design-based hysteretic
model for beam-column connections. International Journal of Earthquake
Engineering and Structural Dynamics. 37:535-555.

Zhang, M. (1996). Determination of neural network material models from
structural tests. PhD thesis, Dept. of Civil and Environmental Engineering,
University of Illinois at Urbana-Champaign. Urbana, Illinois.

www.manaraa.com

CHAPTER 5

Selected Problems of
Artificial Neural Networks Development

Zenon Waszczyszyn 1,2 and Marek Słoński 2

1 Chair of Structural Mechanics,
Rzeszów University of Technology, Rzeszów, Poland,

2 Institute for Computational Civil Engineering,
Cracow University of Technology, Kraków, Poland

Abstract. The chapter discusses selected problems of applications of Stan-
dard (deterministic) Neural Networks (SNN) but the main attention is fo-
cused on Bayesian Neural Networks (BNNs). In Sections 2 and 3 the prob-
lems of regression analysis, over-fitting and regularization are discussed
basing on two types of network, i.e. Feed-forward Layered Neural Network
(FLNN) and Radial Basis Function NN (RBFN). Application of Principal
Component Analysis (PCA) is discussed as a method for reduction of input
space dimensionality. In Section 4 the application of Kalman filtering to
learning of SNNs is presented. Section 5 is devoted to discussion of some
basics related to Bayesian inference. Then Maximum Likelihood (ML) and
Maximum APosterior (MAP) methods are presented as a basis for formula-
tion of networks SNN-ML and SNN-MAP. A more general Bayesian frame-
work corresponding to formulation of simple, semi-probabilistic network
S-BNN, true probabilistic T-BNN and Gaussian Process GP-BNN is dis-
cussed. Section 6 is devoted to the analysis of four study cases, related
mostly to the analysis of structural engineering and material mechanics
problems.

1 Introduction

Artificial Neural Networks belong to a group of “biologically” inspired methods
together with fuzzy systems and genetic algorithms (or, more generally, evolution-
ary algorithms, systems and strategies). These methods are sometimes called soft

Authors would like to acknowledge support from the Polish Ministry of Science and Higher Edu-
cation Grant “Application of Bayesian neural networks in experimental mechanics of structures and
materials”, No. N506 1814 33.

www.manaraa.com

238 Waszczyszyn and M. Słoński

computing methods because these methods can also have such features as adap-
tivity and flexibility to find optimal solutions. That is why soft methods can also
be called methods of computational artificial intelligence, see Jang et al. (1997).
ANNs have turned out to be an especially efficient tool in the analysis of classi-
fication and regression problems, i.e. problems which are commonly analyzed in
various engineering applications.

ANNs were presented at two CISM Courses devoted either to the analysis and
design of structures, see Waszczyszyn (1999), or to the identification problems of
structural engineering, see Waszczyszyn and Ziemiański (2005). The correspond-
ing papers on regression problems can be briefly characterized as the mapping of
input data onto predicted output variables.

The presented Chapter is called “Selected Problems of ANN Development”
and it is, in fact, a continuation of two previous cycles of lectures presented in
Udine at CISM Advanced Courses in 1998 and 2002. From the viewpoint of se-
lected topics, the Chapter deals first with some problems of standard, deterministic
neural networks. Attention is focused on Feed-forward-Layered Neural Network
(FLNN) and Radial Basis Function NN (RBFN). These networks are suitable for
the analysis of regression problems which are discussed in this Chapter.

FLNN and RBFN are sometimes called standard networks since they give a
numerical solution in form of real numbers, and computations are carried out on
the base of the error minimizing paradigm, see Tipping (2004). Fulfilling this
paradigm needs the application of various learning methods which explore differ-
ent iterative techniques. In a special case of linear in weights RBFN the learning
method can be reduced to the solution of a linear set of algebraic equations. Be-
cause of the minimization paradigm also the networks trained by means of stochas-
tic Kalman filtering are treated as standard, deterministic networks.

The second part of the Chapter is devoted to probabilistic networks supported
on the Bayesian inference paradigm. This approach explores the Bayes’ theorem,
which in general does not require iterative techniques, and is based either on the
integration over weights (marginalization principle) or on the random process in-
terpolation method.

The Bayesian approach was introduced to neural networks quite early due to
Buntine and Weigend (1991) but mainly the paper by MacKay (1992) and report
written by Neal (1992) inspired new research and applications. After the first
book on BNNs was written by Bishop (1995) many new books and state-of-the-
art papers were published. From among them we quote here only selected books
and reviews which seem to be accessible for students and engineers and useful for
extending their interest in BNNs. In recent years there were published books by
MacKay (2003), 6-th printing in 2007, Bishop (2006), Rasmussen and Williams
(2006). From among many reviews those by Lampinen and Vehtari (2001) and
Tipping (2004) are especially worth recommending for reading.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 239

In the frame of the Bayesian framework the Bayesian Neural Network (BNN)
was formulated in which the standard, deterministic network is used as a compu-
tational interface. In this Chapter, we apply only FLNN and RBFN networks to
carry out computation needed to explore the Bayesian approach and improve the
analysis of SNN networks. BNN are now in the centre of research interest so their
foundations are briefly discussed in the Chapter.

Special attention is paid to discussions of computational methods needed in the
Bayesian approach. This concerns a deterministic, in fact, method of Maximum
Likelihood, which fully corresponds to the minimization method of Least-Square
error. A much more general method of the Maximum a Posterior is extensively
discussed as well. What seems especially interesting is the application of the Max-
imum Marginalized Posterior as a new criterion for neural network design.

In the Chapter we focus on selected problems concerning standard neural net-
works. We discuss in short the basic problem of the over-fitting phenomenon and
a possibility of controlling it by the weight-decay regularization method. Then we
focus on design of neural networks. The most important question of selection of
a neural network optimal model is discussed on the base of the cross-validation
method and from the viewpoint of a possibility of improvement of this technique
due to application of the Bayesian approach. We focus also on the possibility of
reduction of the input space dimensionality by the application of the Principal
Component Analysis.

From among extended literature devoted to neural networks we selected the
book by Haykin (1999) as a base for preparing the first part of the Chapter. The
second part devoted to the Bayesian neural network is based on the book by Bishop
(2006).

The content of subsequent Sections is mainly illustrated by the analysis of a
simple study case related to synthetic sinusoidal data. Without loss of general-
ity we limited our considerations to the analysis of one-dimensional regression
problem (single output) and D-dimensional input space. In the frame of such as-
sumptions the problems discussed in Sections 2-5 are illustrated in Section 6 on
examples of engineering applications, described in papers by the authors of the
Chapter and their associates.

2 Regression, Over-Fitting and Regularization

2.1 Regression function and regressive models

Regression corresponds to mapping of input variables x j onto output variables
which should be equal targets ti. For the sake of clarity we have assumed one
dimensional output for considering the definition of the target field of the output
data:

t x h x x (1)

www.manaraa.com

240 Waszczyszyn and M. Słoński

where: h x – scalar deterministic function, x – field of random noise, see
Figure 1a.

In what follows we focus on data completed of data points, corresponding to
events, observations or measurements, composed as pairs of input/output:

x t n N
n 1 xn tn N

n 1 (2)

The empirical knowledge, represented by set , is encoded in a numerical
model by the vector of parameters w, i.e. w so the predicted output (numeri-
cal approximation) is y x;w . On the base of these remarks two regressive models
are formulated, see Figure 1 taken from Haykin (1999), p.85.

Figure 1. Regressive models: a) Mathematical model, b) Physical (neural net-
work) model

Simple numerical models can be considered as deterministic algorithms or sys-
tems such as Artificial Neural Networks (ANNs) in which a computed solution
y xn;w is close to the target output tn, see Figure 1b:

tn y x;w en (3)

i.e. the computed outputs are perturbed by computational and model errors en. In
ANNs weight vector w is composed of synaptic weights and biases

w w W
i 1 (4)

where: W – dimension of the weight space.
The vector of weights is computed by means of the training (learning) pro-

cess applying a supervised learning method. Both the training processes and cor-
responding learning methods strongly depend on the regression model applied.
From among many models we focus on the linear models which are based either
on the polynomials or the Gaussian Radial Basis Functions.

2.2 Polynomial approximation of the regression function

Values of parameters wk can be computed applying the least square error function

E w
1
2

N

n 1
tn y xn;w 2 (5)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 241

Optimal values of weights wLS
k are computed by means of the Least Square

method (marked by super- or subscripts LS or LSM) which is related to searching
the minimal value of the function (5):

min
w

E w
E w

wk
0 for k 0 W 1 wLS (6)

For the sake of clarity let us assume a one-dimensional input space D 1 and
polynomial regression function of the K-th order

y x;w w0 w1x w2 x 2 wK x K
K W 1

k 0

wk x k (7)

Substitution of (7) to criterion (6) leads to the linear set of W K 1 equations
from which weights wi can be computed for i 1 W .

Let us discuss a simple numerical example of sinusoidal curve fitting, discussed
in many books and papers, cf. e.g. books by Bishop (1995, 2006).

Example 2.1 taken from Bishop (2006), p. 8. The mathematical regression func-
tion is the sin curve h x sin2 x for x 0 0 1 0 , marked in Figure 2 by the
broken line. Let us consider the case we observe N 10 noisy patterns, see Fig-
ure 2a.

It is assumed that the noisy patterns are generated by applying the curve h x as
the mean value perturbed by the Gaussian noise x with the probability distribu-
tion of the mean zero and variance 2, i.e. p n 0 2 , see (94). Assuming
polynomials (7) of the order K 1 3 9 the corresponding W 2 4 and 10 linear
equations of LS method were solved. The values of weights wLS

k K;N ln
are listed in Table 1.

The sequence of columns 2 – 5 corresponds to the transition from simple to
complex polynomial models. Very simple models K 0 1 are related to linear
regression which gives a declined line shown in Figure 2b. The third order polyno-
mial leads to quite good fitting to the mathematical regression curve h x sin2 x.

The polynomial of order K 9 matches exactly all the N 10 patterns but the
over-fitting phenomenon occurs. This means that the polynomial curve has great
oscillations and large values of curvatures.

The over-fitting phenomenon is a well-known problem of regression models
which should be formulated in-between the simple and complex models. In case
of simple models the accuracy of the approximation can be poor but the polynomial
curves are smooth (regular), cf. cases K 0 1 2 3. The increase of the number
of model parameters wk leads to models whose fitting the patterns is better but the
over-fitting can occur. What seems an acceptable model is one with K 3, which
corresponds to the polynomial of the third order, as shown in Figure 2c.

www.manaraa.com

242 Waszczyszyn and M. Słoński

Figure 2. a) Mathematical regression curve h x sin2 x used for generating
N 10 patterns; b, c, d) Fitting curves for polynomials of orders K 0 1 3 and 9

Table 1. Weights wk K;N ln , where = LS or PLS, for the polynomials of
order K = 0, 1, 3, 9, for the number of patterns N 10 and different values of the
regularization parameter

wk K= 0 K= 1 K = 3 K = 9
ln ln ln 7 81 ln = 0

1 2 3 4 5 6 7
w0 0.19 0.82 0.3 0.3 0.35 0.13
w1 1 27 8.0 232.4 4.74 0 05
w2 25 4 5321 8 0 77 0 06
w3 17.3 48568.3 31 97 0 05
w4 231639 3 3 89 0 03
w5 640042.3 55.28 0 02
w6 1061899 5 41.32 0 01
w7 1042400.2 45 95 0 00
w8 5576823 0 91 53 0 00
w9 125201.4 72.68 0 01

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 243

The increase of parameter values causes an increase of the model complexity,
cf. Table 1. This affects the sensitivity of the model to prediction of new patterns,
which are placed in-between the training patterns.

There are many ways to control the over-fitting. One of them corresponds to
keeping the ratio of the number of patterns and model parameters N W 1. The
suggested values of the optimal ratio of N W is about 10, see e.g. Haykin (1999),
p. 207-209. The commonly used technique for controlling the over-fitting is the
weight-decay regularization technique.

Coming back to the illustrative example discussed above, the polynomial of
the ninth order is used for N 100 patterns. The Ratio N W 10 permits over-
coming the over-fitting and improves significantly the accuracy of approximation,
see Figure 3.

0 1

−1

0

1
9

x

t
N =
K =

100

Figure 3. Reduction of over-fitting by increase of data set to N = 100 and applying
approximation by polynomial of the order K = 9

2.3 Controlling the over-fitting by weight-decay regularization

Regularization can be involved by adding a penalty term to the error function
E w in order to discourage the weight parameters from reaching large values.
The penalty term corresponds to the weight-decay regularization function EW w .
The modified cost function takes the form of penalized error function EF w

EF w E w EW w
1
2

N

n 1
tn y xn;w 2

2
w 2 (8)

where: EF w – full form of the error cost function, EW w – weight-decay regu-
larization function, – regularization parameter, w 2 wTw w2

0 w2
1

w2
K – weight measure.

The optimality criterion (6) is used in the form:

min
w

EF w
EF w

wk
wk 0 for k 0 W 1 wPLS (9)

www.manaraa.com

244 Waszczyszyn and M. Słoński

The term wk stabilizes the solution of the linear set of algebraic equations,
where wPLS x ; corresponds to an optimal solution obtained by means of the
Penalized Least Square method (PLS).

The application of regularization parameter 0 enables cancelling the over-
fitting also for the case W N. The results of computation of wPLS are shown
for the ninth order of approximation polynomial, see columns 5–7 in Table 1. The
case ln corresponds to 0, which means vanishing of the regularization
term in the penalized error function (8). The values ln 7 81 and ln 0
give approximations obtained by the polynomial of orders K = 3, 0 but without
application of regularization, see Figures 2c,b, respectively.

Summing up this Point, what is worth emphasizing is the role of the weight-
decay regularization which permits the control of solution also for complex nu-
merical models without changing the training set.

2.4 ANNs for regression analysis

As mentioned in Section 1, feed-forward Artificial Neural Networks (ANNs) match
especially well the analysis of regression problems. In what follows we quote only
two types of ANNs with acronyms FLNN (Feed-forward Layered NN) and RBFN
(Radial Basis Function NN). These networks are of deterministic character and
they are sometimes called Standard Neural Networks (SNNs). Below, FLNN and
RBFN are briefly discussed for the case of the one hidden layer, vector input x and
scalar output y.

Feed-forward Layer Neural Network (FLNN). This type of ANN is known in
literature under different acronyms, see e.g. MLP (Multi-Layer Perceptron) in the
book by Haykin (1999), BPNN (Back-Propagation NN) in the lecture notes by
Waszczyszyn (1999) and FLNN (Feed-Forward Layered NN) in the other book by
Haykin (2001). In this Chapter acronym FLNN is used.

The simplest FLNN with H sigmoid neurons in a hidden layer and linear output
is shown in Figure 4a. The regression function takes the form

y x;w
H

h 0

w2
hFh

D

j 0
w1

h jx j (10)

where: x x j
D
j 0

D 1 – input vector, w wi
W
i 1

W – weight vector,
Fh – activation functions in the hidden layer.

The activation functions used in the network layers are shown in Figure 4a:
a) linear identity function for the output:

Fout v (11)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 245

b) bipolar sigmoid for the hidden layer

Fh
1 e av

1 e av where a 0 (12)

a) FLNN

+

b) RBFN

+

Figure 4. Basic Standard NNs: a) Feed-forward Layer Neural Network (FLNN),
b) Radial Basis Function Neural Network (RBFN)

The parameter a 1 is often taken in computations, cf. NN Toolbox by Demuth
and Beale (1998) but a 2 is also applied in case of the tanh activation function.
The potential corresponding to the layers is

1) v1
h

D

j 0
w1

h jx j b0

D

j 1
w1

h jx j (13)

2) vout b
H

h 1

Fh v1
h w2

h (14)

FLNN can be trained (learnt) by different learning methods, cf. e.g. Rojas
(1996), Waszczyszyn (1999). In the simplest learning method CBP (Classical
Back-Propagation) the weight vector is computed iteratively, applying gradients
gi of the cost function (5):

gi
E
wi

for i 1 W (15)

Radial Basis Function Neural Network (RBFN). The network RBFN, shown
in Figure 4b, has a layer of Radial Basis Functions (RBFs) k, which are used in

www.manaraa.com

246 Waszczyszyn and M. Słoński

the following linear regression function (in fact the regression problem is linear in
weights)

y x;w
K

k 0

wk k x 0 x b
K

k 1

wk k x (16)

In Figure 4b weight w0 is marked as a bias b and the corresponding RBF is
0 x 1.

The radial basis function, formulated in the feature space , has a general form

k x x k (17)

There are many various forms of RBFs. The polynomial RBF, applied for the
single input x and used in (7), can be written as:

k x xk (18)

From among many RBFs the most commonly applied is the exponential function:

k x exp
1
2

x k
T 1 x k (19)

where the centres are assumed to be k.
The function (19) is usually referred to as “Gaussian basis”, although it does

not fulfil the requirement of having a probabilistic interpretation. If we compare
(19) with the formula of Gaussian density (95) we see that instead of 2 D 2 1 2 1

normalization parameter equals 1 in (19).
In a general form (19) the RBF has D D 3 2 independent parameters

for x D. The simplest Gaussian RBF is obtained if the covariance matrix is
assumed to be a symmetric and isotropic matrix 1 s 2I, cf. discussion in
Point (5.2). The corresponding Gaussian RBF is:

k x exp
1

2s2 x k
T x k (20)

where s is sometimes called spread parameter which governs the spatial scale of
Gaussian RBF.

The function (20) has D 1 parameters and in case D 1, i.e. for the single
input the formula (20) takes the form:

k x exp
x ck

2s2 (21)

where sometimes the mean is denoted as a centre ck.
The regression function (16) is linear with respect to weights. So far for

K 1 N we can obtain the solution applying the linear regression method, fully

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 247

corresponding to the LS method. Obviously, this method can be used for fixed
RBFs, i.e. for known means and spread parameters of the Gaussian RBFs.

A special case, called interpolation RBFN, see Haykin (1999), p.277, corre-
sponds to placing centres of RBFs in the points of the input set, i.e.

k ck xk (22)

where for W K 1 N the centres are selected using various optimization cri-
teria.

In a case of the interpolation RBFN the following vector (one-column matrix)
is formulated for the input pattern points:

W 1 0 xn
1 xn

K xn T (23)

where W K 1 N. The design matrix is composed of N rows vectors T
N 1 xn

corresponding to the number of patterns n 1 N and takes the following form:

N W

0 x1
1 x1

K x1

0 x2
1 x2

K x2

...
...

. . .
...

0 xN
1 xN

K xN

(24)

where:

nk k xn exp
1

2s2 tk y xn;w 2 (25)

Substituting the approximation (16) and vector (22) into (5) the following form
of Eq. (6) can be derived:

w t (26)

where is design matrix (24) and t tn N
n 1. The left-hand side multiplication

of this equation by T enables us to obtain the solution:

wLS
T 1 Tt †t (27)

where the Moore-Penrose pseudo-inverse matrix † is used and the subscript LS
is added in order to mark that solution (27) fully corresponds to that obtained by
the application of the Least Square method.

Solution (27) can be unstable so the minimizer with weight-decay (8) is sug-
gested to be used. This leads to the following solution

wPLS
T I 1 Tt (28)

The added subscript PLS corresponds to the Penalized LS method with regulariza-
tion parameter 0.

www.manaraa.com

248 Waszczyszyn and M. Słoński

Despite using nonlinear Basis Functions (especially RBFs) the formulation
supported on the LS method is called “linear-in-the-parameter w” formulation.

3 Some Problems of ANNs Design

3.1 Evaluation of regularization parameter

It was mentioned in Point 2.3 that the value of regularization parameter con-
trols the complexity of regression models. The network RBFN can be treated as
a representative model for illustrating the analysis of regression problems. Now
the problem of an optimal value of opt is analysed basing on the network error
analysis.

Example 3.1, taken from Tipping (2004). This example continues Example 2.1.
The same mathematical regression function h x sin2 x 0 0 1 0 is applied
but the randomly generated synthetic data set is extended to N 15 patterns,
marked in Figure 5 by black points. This set is called a training set. Additional 15
grain-points are also randomly selected and constitute a validation set.

Figure 5. Mathematical sinusoidal regression function and randomly selected syn-
thetic training and validation points. The regression function y x;w was com-
puted for ln 3 1 66 8 0

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 249

In Figure 6 normalised errors E are shown, where are training
(learning) and validation sets, respectively. The training was performed for K 14
Gaussian RBFs (i.e. for W 15 network parameters) with centres placed in the
pattern points xn yn , randomly selected for the spread parameter s 0 2. The
training curve E is monotonically decreasing and for the log value ln
regularisation does not work.

The trained of RBFN with the weights wPLS was used for computation of
the validation curve E . The minimal value at this curve is reached for ln opt

1 66 and it estimates the optimal value of the regression parameter opt 5 3.

Figure 6. Error curves E and minimal value points at testing and validation
curves E and E , respectively

In Figure 6 the plot of the testing error is shown for the error measure E
y x;wPLS opt h x , computed for the mathematical regression function h x

sin2 x. The estimated optimal value ln opt 2 13 gives the testing error circa
E opt 0 04, much lower than the validation error E opt 0 25. In Fig-
ure 5 the corresponding validation fitting curves are shown, computed for selected
values of regression parameter ln 3 1 66 8 0.

The described method of searching opt corresponds to the classical cross-
validation method. The “true” value of opt is based on a known mathematical
regression function. It is rather a luxurious situation and in computational practice
only the search of opt is commonly carried out.

The estimated value of the regression parameter opt is strongly affected by a

www.manaraa.com

250 Waszczyszyn and M. Słoński

randomly selected validation set of patterns. This question is not so important for
large, statistically representative validation sets. The problem arises if the valida-
tion set is small or its selection from a known set of patterns significantly dimin-
ishes the size of the training set. That is why other error measures or approaches to
designing of ANNs are worth attention. This question is investigated in Point 5.6.

3.2 Some remarks on cross-validation

The idea of designing neural networks on the base of validation set patterns has
been discussed in many papers and books, cf. e.g. Masters (1993), Rojas (1996),
Twomey and Smith (1997), Haykin (1999). The main point of this approach is
that the validation set is selected from a larger set of known patterns and the
remaining subset is used as the training set, where , ,
see Figure 7.

The sets and should be statistically comparable. A set of neural networks
is learnt (trained) on the training set of patterns for various values of a parameter,
representative for the NN model in question. This parameter usually corresponds
to regularization parameter , the number of neurons H in FLNN or the number K
of RBFs in the network RBFN, cf. Figures 4. Let us focus on H as the representa-
tive NN parameter. After the training is carried out, the validation curve E ;H
can be computed for fixed values of H.

On the base of the plot of validation curve we can evaluate a minimal value of
validation error curve E ;H and deduce a corresponding optimal value of the
model parameter. Contrary to the training curve E ;H , which is monotonically
decreasing for the increase of model complexity, the validation curve E ;H has
a minimum at Hopt.

Figure 7. Sets of patterns in behaviour space

It is interesting that we can apply not only various model parameters but also
different error measures to evaluate the training and validation curves. For in-
stance, in a book by Bishop (1995), p. 11, two different measures MSE and RMS

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 251

(cf. definitions in Appendix A1) were applied for the training and validation errors,
respectively. In Point 5.6 we apply another function, called the Bayesian marginal
likelihood whose maximal value can be used as a criterion for evaluation of Hopt.

After cross-validation the network is ready for operation and we should test
the trained network on a testing set of patterns , which should be independent
of the set , see Figure 7. It is a luxurious situation if the testing set corresponds
to the mathematical model, e.g. we know the mathematical regression curve h x
or if we could can formulate a noise-free set of patterns. Very often the set ,
if formulated via numerical simulations, gives so-called pseudo-empirical data
and the testing set is taken from observations or physical experiments. The only
requirement is that the set should be included in a set for which certain rules
are valid. This set should, of course, be referred to the behaviour space , see
Figure 7.

According to suggestions in some references, see e.g. Masters (1993), Twomey
and Smith (1997), it is reasonable (especially for a small set) to retrain an opti-
mal network on the full set of known patterns . After such a process, verification
of the retrained NN on a testing set is invaluable.

All the above remarks take into account the main goal of ANNs formulation.
In the regression problems the trained networks should well predict values of the
network outputs in a larger space in which certain rules obey so the testing
process should approach us to the main goal of NNs designing, i.e. to have a good
prediction of trained NNs.

In many applications we have only a known pattern set . If the set is large
enough it can be split into S subsets of comparable size, see Figure 8. One of the
subsets is used for training and the remaining data are used for validation. This
process is executed S times. Such an approach was called the multi-fold cross-
validation method, see Haykin (1999), pp. 217-218.

Figure 8. Selection of training and validation sets after division S 4 times of a
known set into four subsets

In the often applied modification of multi-fold cross-validation a set of a fixed
number of training patterns is randomly selected S times and trained on the com-
plement to the known set . A quasi-optimal neural network then trained gives

www.manaraa.com

252 Waszczyszyn and M. Słoński

the training error for a predicted regression function y s x , close to the average
error computed for the committee of S networks.

In case the known data set is small and, particularly, scarce it may be ap-
propriate to apply leave-one-out technique in which one after the other patterns are
used for validation and the remaining patterns of the set complete the training
sets.

3.3 Design of ANNs with variable number of RBFs neurons

The ratio of K N, where: K – the number of RBFs, N – the number of training
patterns, influences the accuracy of network prediction at a fixed value of spread
parameter s, assumed in all the RBFs. The adaptive search of K and the application
of different values s is included by means of special procedures taken for instance
from the manual by Demuth and Beale (1998), called Neural Network Toolbox for
Use with MATLAB.

There are also extensively developed general types of RBFNs with the optimal
placement of RBF centres out of the data points, as well as searching of optimal
number of RBFs and their parameters, see Haykin (1999), Ch.5. Other approaches
are related to the application of Support Vector Machines (SVM) or Relevance
Vector Machines (RVM), cf. e.g. Haykin (1999)) and Bishop (2006). The main
idea of these approaches is discussed in Point 5.9.

The situation with the Feed-forward Layered Neural Networks (FLNNs) is
quite similar. We commonly apply the cross-validation procedure, recently also
with weight-decay regularization for controlling the over-fitting phenomena. In
case of one hidden layer the number of hidden neurons H can be used as a repre-
sentative model parameter. The cross-validation method is then commonly applied
and a minimum of the validation error E is used as a criterion of searching an
optimal value of the neuron number Hopt.

The application of the Bayesian framework enables us to extend our possibili-
ties to find the best models of neural networks. This question is discussed at length
in Point 5.6.

3.4 Data pre-processing and reduction of input space dimensionality

Scaling of input data. For most applications, it is necessary first to transform
the data into some new representation before network training. Scaling or normal-
ization is usually applied to have dimensionless data, often transformed to certain
ranges. Very often the selection of transformation is enforced by applied proce-
dures corresponding to physical interpretations, e.g. transformation of data from
time to spectral spaces.

Let us focus on standard transformations. Besides rescaling and normalization
onto the ranges 0 0 1 0 or 1 0 1 0 the input vector components x j can be

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 253

transformed by means of statistical parameters of the data set:

x̂n
j

xn
j x̄ j

2
j

(29)

where: n 1 N – superscript which labels the patterns, j 1 D – subscript
of components in the input space D; x̄ j

2
j – mean and standard deviation of the

data set, defined by the following formulae:

x̄ j
1
N

N

n 1
xn

j (30)

2
j

1
N 1

N

n 1
xn

j x̄ j
2 (31)

The transformed variables x̂n
j have zero mean and unit variance 2

j (or unit
standard deviation j). In case of regression problems it is often appropriate to
apply transformation (29) to both input variables x j and computed output or target
variables y j and t j.

In practice input normalization ensures that all of the input variables are of
order of unity. In this case we expect that the weights of the first hidden layer can
also be of order of unity. Sometimes the normalization range 0 1 0 9 is applied
if the binary sigmoid is used as the activation functions in the network layers. The
use of this range might be important if such an activation function were applied in
the output neurons. That is not our case, since in this Chapter only linear, identity
outputs are used.

In case of RBFs with spherically symmetric basis functions, it is particularly
important to normalize the input vectors so that they span similar ranges. A simple
linear rescaling (29) treats all the vector components as independent. A more so-
phisticated linear rescaling is known in literature as whitening, see Bishop (1995),
pp. 299- 300.

For convenience, let us use the vector of input variables x x1 xD and
define the mean vector x̄ and covariance matrix S:

x̄
1
N

N

n 1
xn (32)

S
1

N 1

N

n 1

xn x̄ xn x̄ T (33)

The eigenvalue equation for the covariance matrix is in the form

Sq j jq j (34)

www.manaraa.com

254 Waszczyszyn and M. Słoński

which enables us to obtain the transformed input vector:

x̂n 1 2QT xn x̄ T (35)

where the eigenvector matrix Q and determinant of the diagonal eigenvalue matrix
are defined as:

Q q1 qD (36)
D

j 1
j (37)

Figure 9 shows that the original distribution of principal eigenvectors is trans-
formed to the whitened distribution since the covariance matrix (33) becomes the
unit matrix.

Figure 9. Transformation of input data set xn to whitened distribution

The discussed transformation of input variables is the base of the PCA (Prin-
cipal Component Analysis) method, which is commonly used for reduction of the
input space dimensionality. PCA is presented below.

Principal Component Analysis. The Principal Component Analysis (PCA) is one
of the commonly applied methods of reduction of input space dimension. PCA
enables us to avoid loss of relevant information which could accompany the di-
mensionality reduction.

PCA is a linear transformation (projection) of the input data xn xn
1 xn

D
D onto a lower dimensional space n n

1
n
K

K , where K D. The
goal of transformation is to maximize the variance of projected data or, equiv-
alently, to minimize the sum-of-squares of the projection errors, cf. Figure 10a
taken from Bishop (2006).

The principal components are measured along the axis j directed by the basis
vectors q j, cf. Figure 10b, which fulfill the criterion of orthonormality:

qiq j i j (38)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 255

Figure 10. a) Projection of points xn onto principal line j, b) Translation and
rotation of principal lines 1 and 2

where: i j – Kronecker delta.
Let us assume that the set of basis vectors is complete, that is

Q q1 qD (39)

so the input points can be exactly expressed by a linear combination of the basis
vectors

xn
D

j 1

n
j q j (40)

where:
n
j xn Tq j (41)

Let us approximate the input data involving a restricted number K D of vari-
ables corresponding to projection onto a lower-dimensional subspace, spanned on
the K first basis vectors q j for j 1 K. Thus, the approximate vector can be
written in the form

x̃n
K

j 1

zn
j q j

D

j K 1

b jq j (42)

Let us introduce the mean-square-error function

J
1
N

N

n 1
xn x̃n 2 (43)

The minimization of J with respect to coefficients zn
j and b j gives

zn
j xn Tq j b j x̄Tq j (44)

www.manaraa.com

256 Waszczyszyn and M. Słoński

The obtained coefficients (44) lead to zero value of the first part of sum (42),
i.e. for j 1 K and the error function is reduced to the formula

J
1
N

N

n 1

D

j K 1
xn Tq j x̄Tq j

2
D

j K 1
qT

j Sq j (45)

where S is the covariance matrix and x̄ is the mean of the data set

S
1
N

N

n 1

xn x̄ xn x̄ T x̄
1
N

N

n 1

xn (46)

The general solution for the minimization of J for arbitrary D and K D is
based on the eigen-analysis of equation (34). Since the covariance matrix is sym-
metric and positive defined, there are D positive eigenvalues which we put in order

1 2 D (47)

Applying the definition of the data set variance

2
j A2

j qT
j X XTq j qT

j XXT q j qT
j Sq j (48)

where: X x x̄ , and substituting (34) into (48) we obtain

2
j qT

j jq j jqT
j q j j (49)

Substituting (48) to (45) we can conclude that the PCA approximation error is

J
D

j K 1
j (50)

Now we can formulate the following PCA algorithm:

10 Formulation of the covariance matrix S for N given data points;

20 Computation of the eigenpairs j q j for the matrix S;

30 Computation of the relative values of the eigenvalues

m j
j

T
where T

K

j 1
j (51)

and estimation of a value K such that

K

j 1
m j adm error

D

j K 1
m j; (52)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 257

40 The formulated approximation enables us to compute the condensed data
(PC vectors)

n = QTxn
K

�
j=1

xn
jq j; (53)

50 PC vector can also serve for reconstruction of the original data

x̃n Q̃T n =
K

�
j=1

� n
j q j (54)

where: Q̃ – incomplete basis matrix

Q̃(D K) = q1 qK (55)

4 Applications of Kalman Filtering to Learning of ANNs

4.1 Sequential data and Kalman �ltering

So far we have focused on sets of events that were assumed to be independent and
identically distributed (i.i.d.). However, there are many observed phenomena for
which the data indicate correlations between events that are close in the sequence.
Such sequential data can be easily put in order if the events are related to a mono-
tonically increasing parameter. The physical time t is frequently used in dynamics
of systems but also any other pseudo-time parameters � of monotonically increas-
ing values can be used in the sequential data y(�).

In what follows we focus on discrete pseudo-time � k = 1 2 K which can
be used to put in order the events in the set of sequential data

y1 y2 yk 1 yk yk+1 yK (56)

which are correlated to each other. This feature can be expressed by the conditional
probability

p(y1 y2 yK) =
K

�
k=1

p(yk y1 yk 1)

= p(y1)p(y2 y1) p(yK y1 yK 1)

(57)

In many observations it is evident that the correlations between the current
event and the previous ones are relaxing, which is the basic assumption of Markov
models. In the theory of Markov chains correlations of the current and several pre-
vious m events are discussed. This can be related to Markov chains of m order. Let

www.manaraa.com

258 Waszczyszyn and M. Słoński

us illustrate this definition on the examples of the first and second order Markov
chains, see also Figure 11:

m 1 : p y1 y2 yK p y1

K

k 2

p yk yk 1 (58)

m 2 : p y1 y2 yK p y1 p y2 y1

K

k 3

p yk yk 1 yk 2 (59)

Figure 11. First and second order Markov chains

The idea to preserve only several time-delay terms is explored in the time se-
ries. The 1-st order Markov chain is assumed to formulate the Kalman filter. The
second assumption concerns the introduction of a state variable xk and formulation
of a model in the state space.

Let us assume that the state variable fulfils the assumption of the first order
Markov chain and the observable variables yk are i.i.d. but they depend on state
variables xk according to the following probabilistic formula, see Figure 12:

p x1 xK y1 yK p x1

K 1

k 2

p xk 1 xk

K

k 1

p yk yk 1 (60)

Figure 12. Sequences of state and observation variables

The model defined by (60) and Figure 12 was used in the formulation of the
Kalman filter which explores the recurrent formulae for computing vectors as map-
pings xk xk 1 and xk yk. The state and observation vectors xk and yk are
assumed to be random variables.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 259

The approach described above is a base for formulating the linear Kalman fil-
ter which is widely explored in the stochastic analysis of discrete linear dynamic
systems, see e.g., Haykin (1999).

There are many problems with the formulation of nonlinear Kalman filters, cf.
e.g. Haykin (1999, 2001), Korbicz et al. (1994). Just in this field the application of
neural networks has permitted overcoming some basic difficulties with formulating
so-called extended Kalman filters for the analysis of nonlinear discrete dynamic
systems, see Haykin (1999, 2001).

4.2 Kalman filtering and KF learning algorithms

The Kalman filtering algorithm is based on the modified first order Markov chain
model (60). In this model the NN weight vector w is assumed to be the state vec-
tor. This leads to two following stochastic equations:

1) process equation
wk 1 wk k (61)

2) observation (measurement) equation

yk hk xk wk ek (62)

where: hk – nonlinear regression function, xk – input vector, k, ek – process and
measurement noises of zero mean and covariance matrices

k ek 0 (63)

k l klQk ekel klRk (64)

GEKF algorithm. The Global Extended Kalman Filter is based on Eqs (61, 62)
and the application of the following recursive formulae, see Haykin (2001), p. 29:

Ak Rk HT
k PkHk

1

Kk PkHkAk

ŵk 1 ŵk Kkek

Pk 1 Pk KkHT
k Pk Qk

(65)

where: Ak – global scaling matrix;Kk – Kalman gain matrix; ŵk 1, ŵk – estimate
of weights of the system at updated steps k 1 and k; Pk – error covariance matrix;
Hk – measurement matrix; ek – error vector; Rk, Qk – measurement and covariance
noise matrices.

The names used in the acronym GEFK correspond to the form of Eqs (65). The
algorithm is called General since it is applied to the whole dynamic system gov-
erned by Eqs (65). The name Extended is used since the commonly used Kalman

www.manaraa.com

260 Waszczyszyn and M. Słoński

filters are linear but in (65) the measurement matrix Hk is nonlinear, i.e. more
precisely, it will be linearized at each step k.

The error vector ek is defined as the difference of the target and computed
output vectors tk and ŷk for the k-th presentation

ek tk ŷk (66)

In case of a single output network the components of the target and computed
vectors correspond to N variables at each observation step k

tk tn
k

N
n 1 ŷk ŷn

k
N
n 1 (67)

The algorithm attempts to find weight values that minimize a cost function, e.g.
the Mean Square Error, cf. definition (A1):

MSE
1

NK

K

k 1

eT
k ek (68)

The measurement matrix Hk is composed of derivatives of the network outputs
with respect to all trainable weight parameters

Hk
hk xk wk

w w ŵk (69)

The derivative matrix is obtained by separate back-propagation for each compo-
nent of the output vector ŷk.

In the algorithm the key role is played by the covariance matrix Pk

Pk wk ŵk wk ŵk
T (70)

In order to start with the recursion the initial estimate ŵ0 and the covariance
matrix P0 have to be assumed

ŵ0 w0 P0 w0 ŵ0 w0 ŵ0
T (71)

The selection of corresponding initial values was discussed at length by Haykin
(2001), pp. 32-33.

The algorithm GEKF, briefly discussed above, can be applied for training of
Feed-forward Layered Neural Networks (FLNNs), Figure 13a. The network has
two hidden layers and a linear output layer. The node activations for the l-th layer
are marked as signals vl

k. An additional input, called auto-regression input yk 1,
corresponds to the time delay. This input can accelerate the training process of the
network in the analysis of some engineering problems.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 261

Figure 13. Layered Neural Network (LNN) with autoregressive input yk 1,
a) Feed-forward LNN (FLNN), b) Recurrent LNN (RLNN)

The noise vectors k and ek stabilize the numerical procedures applied in train-
ing of the neural network. From among different possibilities of the matrices Rk

and Qk modelling the noises, a simple approach is related to assuming the diagonal
matrices and making their parameters depending on the epoch number s

Rk s exp s I Qk s exp s I (72)

where: – parameters of values estimated on the base of numerical ex-
periments. During the training process, the stabilization activity of matrices (72)
is great at the beginning of the training and then diminishes for the increase of s
values.

Due to neural networks it is possible to extend the Kalman filtering application
in the analysis of nonlinear problems. The corresponding algorithms are called
Extended KF, see Haykin (1999, 2001). The algorithm GEKF is based on the non-
linear behaviour of Eq. (62) in which the nonlinear observation function hk xk wk

is used. In the recursion formulae (65), the measurement matrix is used as an ap-
proximation updated at each step k.

DEKF algorithm. In order to diminish computation complexity and storage re-
quirements a decoupling of formulae (65) is carried out, see Haykin (2001), pp.
33-35. The decoupling concerns the introduction of g weight groups. In case
g W , where W is the number of the network weights full decoupling takes place.
Decoupling can also be referred to each neuron (node-decoupling) or to a layer
(layer-decoupling). In such a way the Decoupled Extended Kalman Filter (DEKF)
is formulated.

www.manaraa.com

262 Waszczyszyn and M. Słoński

DEKF algorithm is related to the following recursive formulae, which distin-
guish formulae (65) from GEKF by adding the subscript j to the weights of in-
dividual groups and express the global vectors and matrices via concatenation of
individual quantities. The DEKF algorithm can be written in the following recur-
sive form:

Ak Rk

g

j 1

H j
k

TP j
kH j

k
1

K j
k P j

kH j
kAk

ŵ j
k 1 ŵ j

k K j
kek

P j
k 1 P j

k K j
k H j

k
TP j

k Q j
k

(73)

RLNN network. The Kalman filtering can also be applied to learning of the Re-
current Layered Neural Network (RLNN) shown in Figure 13b.

RLNN is a modification of the Elman network, see Pham and Liu (1995).
RLNN is only internally recurrent since the time-delay of the vector of poten-
tial vl

k 1 is applied as the input to the layer l. These additional internal inputs are
taken into account in the process and observation equations:

wk 1 vk wk vk 1 k (74)

yk hk xk wk vk 1 ek (75)

Obviously, also in RLNN the auto-progressive input ŷk 1 can be applied but in
such a case the internal recursive input v3

k 1 yk 1 is not introduced.

Example 4.1, taken from Lou and Perez (1996). The mathematical model is given
by the curve h x t x of the following equation

t x h x 0 1exp x sin 25x 0 9sin x 10exp x 2 (76)

with the input variable x 0 1 . This interval was divided into 100 equal length
subintervals with K 101 points corresponding to the ends of subintervals. Data
from these points were assumed to be patterns of the training set xk tk K 101

k 1 .
The standard network with one hidden layer FLNN: 1-17-1, see Figure 14, was

proposed to compute the physical type curve y x;w fitting well the points xk tk .
The bipolar sigmoid was used in the hidden neurons defined in (12). The output is
linear with the identity activation function (11).

The network shown has NN 7 1 8 neurons and the number of weight
parameters (synaptic weights and biases) equal W 2 17 1 17 1 52.
Initial values of the weights were randomly selected for k 0 from the range

0 5 0 5 . Two learning methods were used:

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 263

Figure 14. Neural network used for analysis of Example 4.1

1) classical method BP+M, i.e. back-propagation + momentum term, see
Waszczyszyn (1999),

2) DEKF algorithm.
In case of BP+M application the learning rate 0 005 and momentum coeffi-

cient 0 5 were used. The iterations were poorly convergent and after S 5000
epochs the training error was MSE S 0 011.

The DEKF algorithm was applied to the network FLNN shown in Figure 13a,
without using autoregressive input yk 1. The decoupling was performed with re-
spect to g 8 groups corresponding to the network neurons. The artificial noise
was introduced according to formulae (72) with the parameters as written below:

Rk 10exp s 1 50 Q j
k 0 01exp s 1 50 I8 8 (77)

Training with the Kalman filtering was continued up to S 216 epochs when the
error MSE S 0 001. In Figure 15 fitting of simulated curve y x;w to the math-
ematical curve h x is shown. It is clear that the application of DEKF algorithm
gives the simulated curve much more fitting to h x than the classical algorithm
BP+M.

The Kalman filters are commonly applied in the analysis of many engineering
problems related to linear dynamic systems (especially, in the control theory and
pattern recognition), see Korbicz et al. (1994). Kalman filtering was used in net-
works applied to the analysis of structural dynamics problems, see Sato and Sato
(1997). Krok and Waszczyszyn (2007) applied DEKF and RDEFK algorithms
in the simulation of so-called Response Spectra from the paraseismic excitations,
made similar applications. These applications were developed in Krok’s PhD. dis-
sertation, see Krok (2007). In the dissertation, neural networks with Kalman filter-
ing were also applied to the analysis of hysteresis loops in mechanics of structures
and materials, see Krok (2006). Two examples of the Kalman Filtering in SNNs
are discussed in Points 6.1 and 6.2.

www.manaraa.com

264 Waszczyszyn and M. Słoński

Figure 15. Fitting of curves y x;w , trained by algorithms DEKF and BP+M, to
mathematical curve h x

It is worth mentioning that the Kalman filter algorithms can also be formulated
on the base of Bayesian methods, as discussed in books by Haykin (2001) and
Bishop (2006).

5 Bayesian Neural Networks

5.1 Bayesian vs. Standard Neural Networks

There are several reasons why the Bayesian Neural Networks (BNNs) are in the
centre of attention of many researchers and engineers. BNNs have several features
which distinguish them from the Standard Neural Networks (SNNs):

i) BNNs are probabilistic networks, vs. SNNs which are deterministic. That
means that in BNNs random variables are used, and in the analysis not only means
are searched (like in SNNs) but also the probability distribution of the used vari-
ables and parameters.

ii) BNN on the basis of the Bayes’ theorem in which conditional probabilities
are used for the inference of ‘a posteriori’ probability distribution (pd) on the base
of known or earlier computed ‘prior’ pd.

iii) The Bayesian inference needs the computation of integrals over all the
system parameters, called in short marginalization of variables. This creates the
marginalization paradigm of BNNs, vs. the SSN error minimization paradigm.

iv) Regularization is introduced into BPN models in order to control the over-
fitting phenomena. This is not a common approach in SNNs since regularization
or corresponding penalty functions are not usually introduced into formulated de-
terministic models.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 265

v) BNNs contain in fact SNNs since the maximum likelihood method, leading to
“not truly” BNNs, fully corresponds to the SNN paradigm of error minimization.

vi) BNNs seem to be better mathematically founded than SNNs in which many
heuristic types of knowledge are introduced.

vii) BNNs better fit the physical reality of many problems analysed in science
and technology (including, obviously, civil or mechanical engineering) due to the
probabilistic character of those networks.

This Section is based mainly on Bishop’s book, Bishop (2006) and Tipping’s
review, Tipping (2004) but we also return to an outstanding review by MacKay
(1992) and contributions by other authors. In Section 5 the main ideas of Bishop’s
approach are presented, illustrated by simple examples. The attention is focused
on various Bayesian computational methods suitable in the analysis of regression
problems. New trends in BNNs are also discussed in short at the end of the Section.

5.2 Some basics from the probability theory

In order to understand problems discussed in this Section only some basics from
the theory of probability were selected from the book by Bishop (2006), Sections
1, 2 and Appendix B.

Probability and Bayes’ theorem. Let us consider two random variables X and Y
and the probabilities that X will take value xi and Y will take value y j:

p X xi p Y y j (78)

The joint probability, written in the form:

p X xi Y y j (79)

is used for the case both variables are independent of each other.
The case of the probability of Y conditioned by X (this is verbalized as “the

probability of Y given X”) is defined as conditional probability p Y X . In the
same way we define probability p X Y of X given Y .

The joint probability p X Y can be expressed by conditional probabilities by
means of the product rule:

p X Y p Y X p X (80)

p X Y p Y (81)

where: p X and p Y – probabilities of X or Y , sometimes called marginal prob-
abilities.

www.manaraa.com

266 Waszczyszyn and M. Słoński

The second fundamental rule is the sum rule, which is written below with sum-
ming over Y y j:

p X xi
Y

p X Y
J

j 1
p X xi Y y j (82)

The two expressions (80) and (81) must be equal so the following Bayes’ the-
orem can be derived:

p Y X
p X Y p Y

p X
(83)

The theorem can be expressed by means of the following verbalization:

posterior
likelihood prior

evidence
(84)

where the used words correspond to the terms commonly applied in the Bayesian
analysis. The evidence plays the role of a factor which can be written by means of
sum and product rules (80) and (81):

p X
Y

p X Y p Y
J

j 1
p X y j p y j (85)

Theorem (83) is applied to the Bayesian inference in which we start from a
rough ‘a priori’ estimation (prior) of the considered variable Y , for instance the
probability density p Y . Formula (83) enables us to compute an ‘a posteriori’
estimation (posterior) p Y X of Y given X , i.e. an additional knowledge is intro-
duced related to X .

Probability densities. The probabilities discussed above are defined over discrete
sets of events. We also examine probabilities with respect to continuous variables.
Probability density (also called probability distribution - pd) is defined below over
real variable which must satisfy two conditions:

p x 0 (86)

p x dx 1 (87)

The pds can be related also to real variables x and y for which the product and
sum rules take the form:

p x y p y x p x (88)

p x p x y dy (89)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 267

where integral (89) is taken over the whole x axis.
Rules (88) and (89) can be easily generalized for multivariate variable x D:

p x 0 (90)

D
p x y dy 1 (91)

where D is a region (domain) of integration over variable y.
The Bayes’ theorem is valid also for real multivariate variables x and y:

p y x
p x y p y

p x
(92)

p x p y x p x dy (93)

where the region of integration D is usually omitted at the integral.

Gaussian probability distribution. In the Chapter we focus on the applications
of the Gaussian probability density called normal pd. In case of single variable x
the normal pd takes the form, drawn in Figure 16:

x 2 1

2 2 1 2
exp

x 2

2 2 (94)

where: – mean, 2 – variance which can be related to other parameters, i.e.
– standard deviation, 1 2 – precision.

Figure 16. Gaussian (normal) probability distribution

The Gaussian pd shown in Figure 16 fulfils the requirements (90) and (91)
due to the exponential function and the scaling parameter a 2 2 1 2 in for-
mula (94).

www.manaraa.com

268 Waszczyszyn and M. Słoński

In case of D-dimensional variable x the Gaussian pd takes the form:

x
1

2 D 2 1 2
exp

1
2

x T 1 x (95)

where: x D – position and mean vectors, x x T D

D – covariance matrix, – determinant of .
The covariance matrix is symmetric and has D D 1 2 2 independent

parameters. The mean has D parameters, so in the general multivariate case the
Gaussian pd has D D 3 2 independent parameters.

It is sometimes convenient to examine a simplified form of a Gaussian pd in
which the covariance matrix is diagonal with components

i j i j
2
j (96)

The simplified matrix leads to 2D independent parameters of the Gaussian pd.
Further simplification can be obtained by choosing j for all j. This leads to
the isotropic covariance matrix

I (97)

and the corresponding Gaussian pd has then D 1 independent parameters.
Data points drawn independently from the same distribution are said to be in-

dependent and identically distributed (often abbreviated to i.i.d.). In such a case,
we can write the probability of data set xn N

i 1, given and 2, in the form:

p t X w 2
N

n 1
tn y xn;w 2 (98)

5.3 Bayesian inference

In Point 2.1 we discussed the regression problem and illustrated it on a case study
of curve fitting. Following this approach, let us return to the physical model of
regression assuming that the target variable t is given by a deterministic curve
y x;w with additive Gaussian noise

t y x;w (99)

We can express our uncertainty over the value of t using a probability distribu-
tion, which is assumed to be a Gaussian noise. The noise is independent of ob-
served patterns xn tn and has the normal pd of zero mean and variance 2, i.e.
p 2 0 2 . This leads to pd for t defined by (99):

p t x w 2 t y x;w 2 (100)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 269

Figure 17. Observation points xn tn , simulated curve y x;w and Gaussian con-
ditional distribution p t x0 w 2

where the function y x;w plays the role of the mean and 2 is the noise variance.
In Figure 17 the observation points xn tn are shown, numerically simulated with
variance 2 at the curve y x;w as well as Gaussian pd (100).

It was assumed above that the observation tn is referred to multidimensional
domain x D (input space in case of SNNs) so that data set is completed as
pairs xn tn :

xn tn N
n 1 X t (101)

where the input and target subsets are:

X x1 xN t t1 tN (102)

The main goal of regression analysis is to find a scalar regression function
y x;w , probability distributions of the weight parameters vector p w and the
vector of target values t. The analysis is based on discrete data set in which we
have only point observations tn xn . This defines three basic quantities: 1) data
set , 2) set of parameters w , 3) numerical model which can be spec-
ified as a set of hypotheses l related to network architecture or computational
algorithms.

The analysis is based on Bayes’ theorem which reflects various relations be-
tween the conditional probabilities of the mentioned variables. A general form of
Bayes’ theorem is defined as formula (92).

In order to approach the Bayesian inference let us consider two simple prob-
lems called Examples 5.1 and 5.2.

Example 5.1. The Bayesian inference is applied to prediction of probability p w
for weight vector w on the base of an observable set of data . We formulate

www.manaraa.com

270 Waszczyszyn and M. Słoński

Bayes’ theorem in the following form:

p w
p w
p

p w (103)

Probability distribution p w is verbalized as “probability of w given ”.
This means that a prior probability distribution was roughly evaluated as p w
and after a set of data was observed a posterior pd was estimated by means of
(103). It is worth mentioning that pds are values of random variables fulfilling
the normalization condition (91). That is why the evidence (93) plays the role of
normalization factor to have the integral value over the variables equal unity.

The Bayesian inference predicts higher values of the posterior due to multi-
plication of the prior by the ratio of likelihood and evidence, see (103). This is
sketched in Figure 18, where wMP is called the Most Probable weight vector.

Figure 18. Estimation of probability of the most probable weight vector wMP

Example 5.2 – Ockham’s razor. The main goal of this example is to discuss the
evaluation of model complexity.

Let us formulate now Bayes’ theorem for three random variables which are:
data set , vector of parameters w and a set of models l . After application of
sum and product rules the following form of Bayes’ theorem can be derived, see
e.g. MacKay (1992)

p w l
p w l p w l

p l
(104)

in which the so-called model evidence is written in the integral form:

p l p w l p w l dw (105)

Let us focus on three models put in order with respect to their complexity, i.e.
a simple model 1, a complex model 3 and a model 2 of medium complexity.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 271

In Figure 19 the pds of these models are shown. The area under each probability
distribution p l equals unity but the complex model has a wider range of
prediction R3 than the simple model with range R1. This means that the maximum
value pd of complex model p 3 is smaller than p 1 of a simple model.

Figure 19. Conditional probability distributions of data given models l

From the viewpoint of complexity the medium model 2 is the best, which
gives satisfactory estimation of the pd value and the range of predicted data. This
question will be discussed as an important problem of model design, referred also
to the formulation of neural network architectures.

The application of Bayes’ theorem to the evaluation of model complexity is
related to the so-called Ockham’s razor which reflects William of Ockham’s sen-
tence, expressed in the 14th century in a very theological form “non sunt mul-
tiplicanda entia sine necessitate” (from Latin “entities should not be multiplied
unnecessarily”), see http://www.britannica.com/.

Now let us formulate Bayes’ theorem for a simple problem of linear regression
analysis without application of a penalty function for controlling the over-fitting
phenomena (zero value of the hyperparameter). Only one model is assumed
to be applied so the symbol l can be omitted in (105) but the second variable,
corresponding to the precision hyperparameter, so 1 2 is taken into account.

Bayes’ theorem can be written in the following form, where the data input set
X and the target set t are explicitly written

p w X t
p t X w p w

p t
(106)

p t
W

p t X w p w dw (107)

For convenience of notation certain variables are commonly omitted, which
should be formally applied in notation of conditional probabilities or in operators

www.manaraa.com

272 Waszczyszyn and M. Słoński

applied in Bayes’ theorem. The reasons for omitting the quantities can be different
and except those commonly used habits, a reason of omission will be mentioned
in the paper content.

A shortened notation gives the following form of formulae (106) and (107)

p w t
p t w p w

p t
(108)

p t p t w p w dw (109)

In formulae (108) and (109) the input data set X is omitted since in the re-
gression problems we never seek to model the given input data, and X is purely a
conditional variable. The region of integration W is also omitted since it is clear
that an appriopriate region should correspond to the variable w.

5.4 Maximum Likelihood method

Let us turn our attention to the likelihood in the nominator of (108). The max-
imal value of the likelihood function L p t w gives fairly good estimation
of probability of the vector of parameters w. This approach can be deduced from
the fixed value of the evidence and a lower value of the prior than the value of the
posterior.

Let us assume the Gaussian (i.e. normal) probability density for all the vari-
ables except the hyperparameter 1 2, which is fixed and known in advance.
In later points the inference of 2 from the data set will be discussed. The Gaus-
sian pd of the likelihood can be written in the following form:

p t w 2
N

n 1

tn y xn;w 2 (110)

where:

tn y xn;w 2 1

2 2 1 2
exp

1
2 2 tn y xn;w 2 (111)

It was proved that it is convenient to consider the log likelihood function, see
Bishop (1995, 2006):

lnL ln p t w 2 1
2 2

N

n 1

tn y xn;w 2 N
2

ln
1

2

N
2

ln 2 (112)

Now we consider maximizing of lnL with respect to the model parameters, i.e.
the vector w and variance 2. From the equations L w 0 and L 2 0

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 273

we obtain the following maximizers:

max
w

lnL
L w 0

wML (113)

max
2

1
2 2

N

n 1
tn y xn;w 2 N

2
ln

1
2

L 2 0

2
ML

1
N

N

n 1

tn y xn;wML
2 (114)

where the acronym ML stands for the Maximum of Likelihood.

General solution for ML. The ML method corresponds to the Least Square (LS)
method discussed in Point 2.2. The parameter vector wML is chosen by mininizing
the cost function E w , defined by formula (5). This formula can be obtained
as the negative log likelihood lnL if we drop in (112) the terms independent
of w. Thus, we come to the minimization problem whose minimizer wLS can be
computed in an iterative way (networks FLNN) or by the Least Square method
(network RBNN)

min
w

E w max
w

lnL

min
w

1
2

N

n 1

tn y xn;w 2 E w 0
wLS wML (115)

It is worth adding that the analogue was obtained under the assumption of a
Gaussian noise in the Bayesian likelihood, which is reflected in formula (110).
Another interesting conclusion is that the variance of the noise 2

LS, computed
from the equation E 2 0, equals the Mean-Square-Error (MSE), see Ap-
pendix A1:

MSE 2
LS (116)

The error MSE is explored in the training of deterministic SNNs. The only remark
is that MSE should be computed for non-scaled output variables.

The conclusions expressed above are general and fit well the Feed-forward
Layered NN (FLNN). The Radial Basis Function NN (RBFN), discussed in Point
2.4, is linear in weights so it can give explicit analytical formulae for wML and 2

ML.

Application of RBFN in ML. Due to RBFs, the regression function y x;w can
be written in an explicit form, cf. (16):

y x;w
K

k 0

wk k x wT x (117)

www.manaraa.com

274 Waszczyszyn and M. Słoński

where: w – vector of weights of dimension 1 W for W K 1, x
0 x 1 x K x – vectors of RBFs of dimension K 1 1, where the

number of RBF equals K and 0 x 1.
After substitution of (117) to (110) the likelihood pd takes the form:

L p t w 2
N

n 1
tn wT x 2 (118)

From the log likelihood (112) we can deduce the error function

E w
1
2

N

n 1
tn wT xn 2 (119)

The optimal weight vector wML can be computed as the minimizer (115), which
corresponds to the solution (27)

wML wLS
T 1 Tt (120)

where is design matrix (24).
The mean ML and variance 2

ML of computed and biased output variables are:

ML wT
ML xn (121)

2
ML

1
N

N

n 1
tn wT

ML xn 2 (122)

5.5 Bayesian inference and MAP

General relations. Let us extend Bayes’ theorem (108) with respect to adding
as an additional parameter:

p w t
p t w p w

p t
(123)

We suppose that the prior pd is Gaussian in form:

p w w 0 1I (124)

and the likelihood is given by Gaussian pd (110). The resulting posterior pd can
be written in the form:

p w t p t w p w (125)

which is non-Gaussian because of nonlinear dependence of y x;w on w.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 275

Substitution of Gaussian pds (110) and (124) into (125) gives an approximation
of the posterior pd:

p t w p w
2

N 2

2

W 2
exp F w dw (126)

The log of posterior (125) can be written in a compact form:

ln p w t F w
N
2

ln
W
2

ln
N W

2
ln 2 (127)

Thus, omitting constant terms, the negative logarithm ln p w t gives
the penalized cost function

F w E w EW w
2

N

n 1

tn y xn;w 2

2

W

i 1

w2
i (128)

Function (128) fully corresponds to function (8) if 1 and 2.
Similarly as in (115), we can write the following relation:

min
w

F w max
w

ln p w t
F w 0

wMAP (129)

where the acronym MAP stands for Maximum APosterior.
In case of RBFN the application of minimization (129) leads to the analytical

formula corresponding to (28):

wPLS
T I 1 Tt (130)

where 2.
The maximization of the approximated log of posterior (127) with respect to

the mean of observable values of the set of outputs y xn wMAP and with respect
to the variance 2 1 gives the following formulae:

MAP
1
N

N

n 1

y xn wMAP (131)

2
MAP

1
N

N

n 1
tn wT

MAP xn 2 (132)

The mean MAP and variance 2
MAP can be related to observable output points

(biased data). In case we remove bias from observable data the factor N 1 is taken
into account in (132) and unbiased variance takes the form, cf. Bishop (2006), pp.
27 and 171:

˜ 2
MAP

1
N 1

N

n 1
tn wT

MAP xn 2 (133)

www.manaraa.com

276 Waszczyszyn and M. Słoński

Other formulae can be also obtained from maximization of (127) with respect
to hyperparameters and :

eff
W

2EW wMAP
eff

N
2E wMAP

(134)

Parameters (134) are called efficient hyperparameters. They can be used in an
iterative procedure for improving the weight vector wMAP computed by standard
(deterministic) NNs, cf. Bishop (1995), Chapter 10.

Linear predictive distribution and curve fitting. Let us assume that the values of
hyper-parameters and are fixed. Results obtained above were obtained on the
base of point estimation of the vector wMAP in regression. From a practical point of
view we are interested in the prediction of a regression curve in points other than
those corresponding to training patterns, i.e. in fact, a continuous regression curve
y x;wMAP is needed. This question is related to a more Bayesian approach in
which the conditional probability distribution (100) is given in form of the integral
over all weights wi, written in full notation:

p t x X t
W

p t x X w p w X t dw (135)

where: x t – continuous variables, called a single, “new” or prediction pattern,
X x1 xN t t1 tN – sets of training data.

In the Bayesian analysis we apply the so-called principle of marginalization,
i.e. integration over marginal variables (variables we want to eliminate). In the
given conditional probability distribution (135) the weight vector w is treated as a
marginal variable.

In case of RBFN model the conditional distribution (135) is taken for a sin-
gle pattern x t . Then, taking into account Bayesian laws, the following predic-
tive distribution for predicting a new pattern x t can be obtained, see Bishop
(1995), p. 400:

p t x X t t wT
MAP x 2

N x (136)

The variance 2
N x for predictive distribution is given by the curves corre-

sponding to standard deviation N x , in literature called error sigma bar t, see
Bishop (2006), p. 156:

2
N x 2

t x 2 x TSN x (137)

where:
SN

T I 1 (138)

The first term in (137) corresponds to the noise of data. The second term rep-
resents the uncertainty related to the vector of parameters w. Because the pds in w

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 277

are independent it was possible to prove (see references in Bishop (2006), p.156)
that 2

N 1 x 2
N x and for N the 2

N x 1 2.

Example 5.3, taken from Bishop (2006), pp.157-158. For illustration the applica-
tion of predictive distribution for the Bayesian linear regression model (basing on
the interpolation RBFN), we return to the data set generated from the sinusoidal
mathematical curve h x sin2 x.

In Figure 20 four special cases are shown, corresponding to N = 1, 2, 4 and 10
patterns. The broken line represents the mathematical regression curve h x .

Figure 20. Fitting curves and regions of N uncertainty computed either by the
Gaussian model consisting K = 9 Gaussian RBFs (for N = 1, 2, 4 patterns) and
polynomial RBF for N = 10

The Bayesian prediction was carried out by means of a model consisting of
K 9 Gaussian RBFs. This model was used for three data sets composed of
N 1 2 4 patterns. The fourth figure was made by the polynomial model of order
K 9. The computations of fitting curves y x;wMAP , plotted as continuous lines
in Figure 20, were carried out for fixed values of hyperparameters 5 10 3

and 1 2 11 1. The shaded region of the prediction uncertainty spans on
1 standard deviation bounds (1 sigma error bars 1 t x N x around the mean
y x;wMAP .

It is worth noting that the predictive region of uncertainty depends on x, ac-

www.manaraa.com

278 Waszczyszyn and M. Słoński

cording to (137). The width of this region equals 2 N x and, in case of Gaussian
RBFs, is smallest in the neighbourhood of the data points where centres of RBFs
were placed. It is in these points of independent variables xn

k that the bounds
are nearly 1 . The same situation occurs if the number of patterns increases.
This is the case of N 10 patterns, analysed by K 9 polynomial RBFs (7). It
is visible that the fitting curve (polynomial of the 9th order) is bounded by nearly
equidistant curves: 1 N 1 t 0 3 .

5.6 A more general Bayesian framework

Computation of predictive distribution. Let us return to the problem of predict-
ing a single variable t , corresponding to an input x . The conditional Gaussian
distribution can be written in a general form

p t x w t y x ;w 1 (139)

This formula is referred to a general form of regression function y x;w which can
be used as an output of the Feed-forward Layered Neural Network (10). Now the
regression problem is nonlinear, contrary to the network with RBFs which imply
the “linearity in weights”.

Using distribution p w in form (124) we can obtain the posterior p w
in the form corresponding to (125) and the log posterior takes the form (127). Be-
cause the function y x;w is nonlinear, the solution wMAP can be found by means
of neural networks, applying error backpropagation or any other learning method.

Having evaluated wMAP we can use it in the Gaussian approximation to the
posterior distribution, see Bishop (2006), p.279:

q w w wMAP A 1 (140)

where matrix A is given by the formula

A w w p w H I (141)

In formula (141) the Hessian matrix H appears comprising the second derivatives
of the error function E with respect to the components of weight vector w:

H w wE (142)

Predictive distribution is obtained by application of the marginalization princi-
ple:

p t x p t x w q w dw (143)

However, even with the Gaussian approximation to the posterior, the integra-
tion is analytically intractable because of the neural network function y x;w .

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 279

Thus, we have to either apply the numerical integration or use approximation of
y x;w .

The common approach is to use the Taylor series and restriction to the linear
approximation of y x;w , which leads to the formula

y x;w y x;wMAP gT w wMAP (144)

where
g wy x;w w wMAP (145)

The approximation (145) gives the following Gaussian pd of predictive distribu-
tion, see Bishop (2006), p.279:

p t x t y x ;wMAP
2
t x (146)

where the input-dependent variance is given by

2
t

2 gTA 1g (147)

which is commonly used for computation of the error sigma bar t.
In case of application of RBFN, the analysis becomes linear and corresponding

analytical formulae (136) and (137) can be applied.
The main problem of the general Bayesian inference is the application of the

Hessian matrix (142). The computation of the second order error function gradi-
ents needs more operations so very often simple approximations are used in the
neural network learning methods. From among many approximations, let us men-
tion only the use of the first gradients of the error function in the pseudo-Newtonian
learning methods applied in ANNs.

Let us write the Hessian matrix in the form

H E
N

n 1

yn yn
N

n 1

yn tn yn (148)

where yn y xn ;w w. The elements of the matrix H can be found in
O W 2 steps by simple multiplication. This estimation can be diminished to O W
steps applying the approximation of the Hessian matrix

H
n

bnbT
n (149)

where bn yn. This approach is used in the Levenberg-Marquardt learning
method but for general network mapping the second term in (148) cannot be omit-
ted.

Marginal likelihood. Let us return to Bayes’ theorem (123) writing the evidence

www.manaraa.com

280 Waszczyszyn and M. Słoński

p t in an extended form p . Then we express it by means of the sum
rule in the following integral form

p p w p w dw (150)

which is the marginal likelihood. Formula (150) is obtained from the likelihood
via marginalization of the weight parameter vector w. After substitution Gaussian
pd (111), the formula (150) takes the form

p 2 N 2 2 W 2 exp F w dw (151)

where the function F w is the error cost function

F w F wMAP
1
2

w wMAP
TA w wMAP (152)

The function F wMAP corresponds to formula (128):

F wMAP E wMAP EW wMAP

2

N

n 1
tn y xn;wMAP

2

2
wT

MAPwMAP (153)

In the following analysis we will apply the approximate log marginal likeli-
hood

ln p F wMAP
1
2

ln A
W
2

ln
N
2

ln
N
2

ln2 (154)

In case of application of Gaussian RBFs the F w function takes the following
analytical form:

F w
2

t w 2

2
wTw

F mN
1
2

w mN
TS 1

N w mN (155)

where:

F mN 2
t mN

2

2
mT

NmN (156)

S 1
N

T I (157)

mN SN
Tt (158)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 281

www.manaraa.com

282 Waszczyszyn and M. Słoński

In Figure 21 the plot of the negative log marginal likelihood lnMal(ln�)
is shown (the term const(N �)) is omitted). The most striking effect is that the
function lnMal(ln�) has a minimum! It was evaluated that the minimal value
of

min
w

(lnMal(ln�)) ln�Mal = 0 8 (160)

A great value of the conclusion expressed above is that the log marginal likeli-
hood curve lnMal(ln�) has the maximum at ln�Mal (minimum for lnMal(ln�)).
Thus, the curve of log marginal likelihood can be applied for the selection of an op-
timal value of the regularization parameter ln�Mal. The criterion MML (Maximum
Marginal Likelihood) can play a crutial role since on the same set of training pat-
terns it is possible to optimize the numerical model only with respect to the training
patterns (without a validation set of patterns!). This conclusion can be invaluable
especially for small known set of patterns P (in such a case the training set can
correspond to the full set L = P).

Example 5.6, taken from Bishop (2006), pp. 167-168. Let us now apply the cri-
terion of maximum marginal likelihood to the evaluation of an optimal order K of
the polynomial. The number of training patterns is N = 10 and values of hyperpa-
rameters are �xed as � = 1 � = � = 5 10 3.

The log marginal likelihood (159) can be used and its value is computed as-
suming K = 0 1 9. In Figure 22 the plot of lnMal(K;L) is shown versus the
error function curves RMS(K;S), where S = L corresponds to the training set
of patterns and S = V to a validation set, cf. Bishop (2006), Figure 1.5.

Figure 22. Plots of error functions RMS(K;S) for training (S = L) and valida-
tion set (S = V), vs. log marginal likelihood curve lnMal(K;L)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 283

The graphs plotted for the K 0 1 2 polynomials (7) give a poor approxima-
tion if we look at the training and validation curves RMS K; and RMS K; ,
respectively. Then for the polynomial orders between K 3 and K 8 the errors
are roughly constant. The log marginal likelihood curve lnMal K; , computed
for the training set of patterns shows an increase of ln Mal values changing the
polynomial order from K = 0 to K = 1. The polynomial gives a decrease of ln Mal
value for K 2 since the quadratic polynomial has no even terms for good ap-
proximation of the sinusoidal curve. The global maximum is reached for K 3.
The criterion of maximum of the log marginal function clearly indicates the cu-
bic polynomial as a simple model, contrary to the cross-validation criterion which
gives nearly the same values of the validation error for K 3 8 .

The remarks expressed above are of great practical value. The maximum of
lnMal prefers a model which is neither too simple nor too complex. This conclu-
sion fully agrees with Ockham’s razor criterion. Moreover, the maximum log Mal
can indicate the best model, contrary to the cross-validation criterion which can
give preferences to some models of various complexity.

The marginal likelihood (150) fully corresponds to the model evidence in (123).
The searching for Maximum of Marginal Likelihood is performed by means of the
Evidence Procedure, see Nabney (2004). In this procedure hyperparameters are
updated using their optimal values.

5.7 SNN/MAP networks

Optimization of hyperparameters. So far, hyperparameters and have been
assumed as fixed and known in advance. The nonlinear Bayesian analysis is based
on hyperparameters which depend on the data set, values of noises or other ap-
proximation errors. Thus, in the full nonlinear analysis hyperparameters are now
variable. Corresponding optimal values of opt and opt can be derived on the base
of a more general Bayesian framework.

In the Evidence Procedure we can compute point estimations of and by
maximizing ln p . We will refer the analysis to the eigenvalues of the
Hessian matrix. Let us start with the following eigenequation

Hui iu (161)

where i 1 W for W corresponding to the weight parameter space dimension.
It can be proved, see Bishop (2006) pp.169 and 280-281, that maximization of
(154) with respect to and gives the following two formulae:

opt
wT

MAPwMAP
(162)

1

opt

2
N

1
1

N

n 1
tn y xn;wMAP

2 (163)

www.manaraa.com

284 Waszczyszyn and M. Słoński

where
W

i 1

i

i
(164)

Formulae (162) to (164) reflect the coupling of the hyperparameters opt and
opt and the computed (updated) weight vector wMAP by means of the parameter
. In case i we have 0 and the precision parameter MAP ML. The

other case i gives W .
The case of N W corresponding to a great number of observations is worth

mentioning. If additionally the parameters are well determined, i.e. for i

then formulae (134) are valid since opt eff and opt eff.

SNN/MAP networks. In practical implementation, we can apply the Evidence
Procedure in the SNN training process. Hyperparameters are used in the penalized
error function F w given by formula (128) with hyperparameters and .

We can start from certain initial values of in and in and applying a learning
method SSN we can compute the weight vector wold

MAP. Then the hyperparameters
are updated by means of formulae:

new
2EW wold

MAP
new

N

2E wold
MAP

(165)

Then the values of hyperparameters (165) are introduced to the supervised learning
of SSN for computing the parameter wnew

MAP. To continue iteration we substitute
wnew

MAP wold
MAP into the recursive formula (165).

Instead of (165) the approximate formulae (134) can be also applied. This
enables us to omit the eigenanalysis of the Hessian matrix (161).

The approach discussed above corresponds to formulation of a new learning
method of standard neural networks. The Bayesian framework is explored for
optimization of hyperparameters used in the penalized cost function F w . Thus,
the merit of the neural network is not change since the minimization of the cost
function error is the paradigm of the network SSN/MAP.

The SSN/MAP networks are discussed in the book by Bishop (1995). The ap-
plication of these networks to the analysis of various problems, cf. e.g. Foresee
and Hagan (1997), Słoński (2005) indicates out that only several updates of hyper-
parameters are needed to obtain satisfactory results. SNN/MAPs were also applied
to the analysis of engineering problems discussed in Points 6.1 and 6.4.

5.8 General Bayesian analysis

Practical Bayesian prediction and a Monte Carlo method. In the basic Bayes’
theorem (123) we used hyperparameters only as conditional variables. The theo-

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 285

rem can be written in a more practical form

p w t
p t w p w p p

p t
(166)

where the evidence (marginal likelihood) is

p t p t w p w p p dwd d (167)

Comparing (167) and (150) we can see that marginalization is extended. Now
not only the weight parameter vector w but also hyperparameters and are
treated as marginal variables. Therefore, now the prior pds p and p should
be defined. The pd p is so-called hyperprior.

Similarly to (167) the Bayesian predictive distribution can be written in the
form

p t t p t w p w t p p dwd d (168)

Unfortunately, nearly always integrals (167) and (168) cannot be analytically
tractable to compute. There are two ways possible to the integration over marginal
variables. The first approach focuses on approximations which enable obtaining
the posteriors in the form of analytical probability distribution. Some ideas of this
approach are discussed briefly in the next Point.

The second approach, commonly used, is related to the application of numer-
ical algorithms. One of more efficient techniques is to join the numerical Monte
Carlo method with numerical algorithms of data sampling. Below we present in
short the main ideas of the Markov Chain Monte Carlo (MCMC) method, see
Bishop (2006), pp. 537-554, whose modification is known as the Hybrid MC
method, see Neal (1992).

Let us consider an integral and its Monte Carlo simulation

I F w p w dw
1

MC

MC

i 1
F wi p wi

1
MC

MC

i 1

i F wi p̃ wi

i p̃ wi
(169)

where: p w – posterior pd of w, MC – the number of Monte Carlo samples,
p̃ wi un-normalized distribution.

The MCMC method is a random walk in which the successive steps are attained
adding a small random noise to the weight parameter vector w:

wnew wold (170)

www.manaraa.com

286 Waszczyszyn and M. Słoński

The walk is assumed to obey the first order Markov chain, defined in Point 4.1.
In case of the Hybrid Monte Carlo (HMC) the gradient of p w is applied to
choose search directions which favour regions of high posterior pd.

The candidate steps are controlled by the application of a sampling method.
What is commonly used are either the Metropolis-Hastings or Gibbs method, see
e.g. procedures in the manual of NETLAB by Nabney (2004). The main idea to
control the candidate step is, see Bishop (1995), p. 427:

a) if p wnew p wold then accept candidate sample

b) if p wnew p wold then reject candidate sample
(171)

In Figure 23 an example, taken from Bishop (2006), p. 539, is presented. It
illustrates the application of the Metropolis-Hastings method, in which the ful-
filling condition (171) led to rejection of 49 samples from among 150 generated
candidate samples.

Figure 23. Illustration of the Metropolis algorithm in which rejected candidates
are marked by broken lines

Type–II ML approximation. From among analytical methods suggested to be ap-
plied to marginalize certain probability densities, the maximum of Type-II Marginal
Likelihood (see Tipping (2004)) is below discussed briefly.

Let us start from the product rule of probability and write down the following
relation

p w t p w t p t (172)

The first term in (172) is known as p w t and the second
term can be approximated by -function at its mode, i.e. we find the “most proba-

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 287

ble” values MP and MP which maximize the posterior, see Tipping (2004):

p t
p t p p

p t
(173)

Since the denominator is independent of and , we maximize the nominator
of (173). Furthermore, if we assume very flat priors, called uninformative priors
over ln and ln , then we come to the problem of the maximum of marginal
likelihood.

Having found MP and MP we can formulate the following approximation for
predictive distribution

p t t p t w MP p w t MP MP dw (174)

The integral (174) is computable and it is a Gaussian pd:

p t t 2 (175)

The mean and variance of (5.8) can be analytically expressed in case of RBFs
application:

wT
MP x 2 2

MP x TSN x (176)

where the vector x and the matrix SN are defined in (23) and (138), respec-
tively.

Sparse Bayesian models and hierarchical priors. A lot of attention in the linear
analysis has recently been paid to the sparse learning algorithms (Bishop (2006),
Tipping (2004)). These algorithms set many weight wk to zero in the estimator
function y x k k x wk.

The sparsity can be attained, in fact, by introducing a so-called hierarchical
prior, related to the vector of hyperparameters i

W
i 1. This prior and prior

are defined by means of Gamma distribution, see Bishop and Tipping (2003):

p
W

i 1
Gamma i a b p Gamma c d (177)

where

Gamma a b
1
a

ba a 1e b (178)

in which a 0 ta 1e tdt is the Gamma function. It was proved by Bishop and
Tipping (2003) that it is possible to assume zero values for the scaling parameters
a b c d 0.

www.manaraa.com

288 Waszczyszyn and M. Słoński

The effective prior p wi is defined by a Student’s t-distribution

p wi p wi i p i d i
ba a 1 2

2 1 2 a
b w2

i 2 a 1 2 (179)

In Figure 24a the Gaussian distribution p w in two-dimensional domain
p w1 w2 is shown. In Figure 24b the Student’s t-distribution prior p w is pre-
sented after hyperparameters and the Gamma pd product were integrated. As can
be seen in Figure 24b, the probability mass is concentrated close to the origin
where both weights go to zero, and also along the ribs where one of the two weights
goes to zero.

Figure 24. a) Gaussian prior p w , b) Student’s t-distribution for prior p w .

5.9 Kernels and Gaussian Process

Kernels methods. In Point 2.4 we briefly discussed the RBFN network in which
the Gaussian RBFs are used. The simplest Gaussian RBF can be written in the
form in which we can use the Euclidean distance x x :

x exp x x 2 2 (180)

where x is the centre of RBF. Instead of (180) we can formulate a so-called kernel
function

k x x x T x k x x (181)

The main idea of the kernel framework is introduction of the inner product in
the input space, which allows formulation of interesting extensions of many well-
known algorithms. The kernels can be of different forms. For instance, the tanh
sigmoid function can be written as the following sigmoidal kernel:

k x w x tanh axTx b (182)

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 289

Kernels can join the exponential and algebraic functions. For instance, in the
GP analysis the following kernel is applied:

k xn xm
0 exp 1

2
xn xm 2

2 3 xn Txm (183)

where: xn xm – input pattern points, i
3
i 0 – set of the input space parame-

ters.
The kernel k xn xm is a component of design matrix known as Gramm matrix

KN N
T k xn xm (184)

where: T x1 xN . Please turn attention that now is a vector in
(184), not the design matrix (24).

Kernel functions can be used as RBFs in all the above Points where the linear
regression problems have been discussed. Kernel models are a basis for building a
numerical model called the Support Vector Machine (SVM). In the book by Bishop
(2006), pp.339-343, SVMs are in short discussed. This numerical model is similar
to the interpolation of RBFN algorithm and it can be efficiently applied in the linear
regression analysis. In Figure 25a, taken from Bishop (2006), p.344, an illustration
is shown of the application of seven kernel functions (double circle points) for the
case study of the sinusoidal synthetic data with ten points (single circles).

Figure 25. Predicting regression curves and 1sigma error bars for N 10 sinu-
soidal synthetic data, obtained by means of: a) Support Vector Machine (SVM),
b) Relevant Vector Machine (RVM)

On the base of sparse Bayesian models Tipping (2001) formulated a modifica-
tion of SVM called the Relevance Vector Machine (RVM). Due to computational
advantages of RVM the number of corresponding kernels can be significantly de-
creased, cf. Figure 25b where only three kernels were applied, vs. seven ker-
nels in SVM.

www.manaraa.com

290 Waszczyszyn and M. Słoński

Gaussian Process in Bayesian prediction. On the base of kernel models the
Gaussian Process (GP) approach was developed and recently it has been intro-
duced to the Bayesian prediction, see e.g. review by MacKay (1998) and books by
Bishop (2006), Rasmussen and Williams (2006). GP dispenses with the paramet-
ric model and, defines instead, directly a prior pd over functions. The main idea of
GP was clearly explained in a paper by Bailer-Jones et al. (1997). That is why we
can start from Figure 26, taken from the paper mentioned above (one-dimensional
input and output spaces are considered).

On the base of data composed of N patterns (see Figure 26 where N 4
patterns) we wish to predict a new pattern point of the target value tN 1 for the
known input xN 1. We start with computation of covariance matrix CN of size
N N with components:

cnm k xn xm 1
2 2 nm (185)

The conditional distribution p tN 1 t can be found as Gaussian distribution

p tN 1 xN 1
N tN 1 mN 1

2
N 1 (186)

where the mean and variance are computed from the Gaussian pd, see Bishop
(2006), pp. 307-308:

mN 1 xN 1 kTC 1
N t (187)

2
N 1 c kTC 1

N k (188)

The vector k and scalar c are components of the covariance matrix CN 1:

CN 1
CN k
kT c

(189)

where:

kT k xn xN 1 N
n 1 c k xN 1 xN 1 1

2 2 (190)

which enables computation of Gaussian joint distribution

p tN 1 tN 1 0 CN 1 (191)

for tN 1 tn N 1
n 1 .

It is worth mentioning that in the GP method weight parameters are not used.
The main problem of the approach is computation of the inverse matrix CN which
requires O N3 computations. A vector-matrix multiplication needs O N2 com-
putations. It is clear that in case of large data sets the curse of dimensionality
appears.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 291

Figure 26. Schematic description of GP method for one-dimensional regression
problem

By contrast, the application of interpolation RBFN needs the numbers of cor-
responding computations O W 3 and O W 2 , respectively for W K 1, where
K is the number of RBFs. However, an advantage of the GP framework is that we
can take into account covariance functions which could only be expressed in terms
of infinite number of RBFs. More information on the GP method can be found in
Bishop (2006), pp. 303-320.

5.10 Bayesian inference and ANNs

Let us sum up this Section by writing relations between ANNs and Bayesian in-
ference, which are, in general, completed of the learning and prediction parts, see
Table 2, where the predicted pattern is marked as xN 1 tN 1 .

It was proved that the Bayesian Maximum Likelihood and corresponding SNN/ML
fully correspond to searching of the minimum in the Penalized Least Square error
method and application of the classical, deterministic networks SNNs.

The Bayesian Maximum A Posterior approach can be used for improving learn-
ing of deterministic network SSN/MAP by means of error minimization of the
penalized cost function.

Simple BNN is based on “a more” Bayesian approach. This means that hyper-
parameters are deterministic and their values can be improved in an iterative way.

www.manaraa.com

292	 Waszczyszyn and M. Słoński

Table 2. ANN framework, learning quantities and prediction functions

In this approach numerical methods for the integration of pds are introduced, e.g.
Hybrid Monte Carlo method.

In the True BNN the hyperparameters αMP, σ2
MP are assumed to be random

values and they are computed as variables coupled with the weight vector w and
data set D .

The application of the Gaussian Process in the Bayesian inference is based on
the computation of the total, inverse covariance matrix C−1

N (XN ,σ2) in the input
space. In this approach we resign from the weight parameter vector w and instead,
in kernels, we introduce the parameter θ, cf. (183). The most important point is
that we assume the Gaussian posterior in which the mean mN+1 and variance σ2

N+1
parameters are computed, cf. (187) and (188).

In Table 2, possibilities of using various approximations are shown and atten-
tion is also focused on the application of the Gaussian Process approach that is
now at the research top of the Bayesian analysis.

6 Applications of ANNs to the Analysis of Selected
Engineering Problems
The Section is devoted to discussion of several engineering problems, selected
from the viewpoint of illustration of the topics discussed in previous Sections of
the Chapter. All the presented problems have been developed in research con-
ducted in recent years at the Institute of Computer Methods in Civil Engineering
(now Institute for Computational Civil Engineering) of the Cracow University of
Technology, Poland, see Waszczyszyn (2006).

56

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 293

6.1 Dynamics of buildings subjected to paraseismic excitations

In the recent 15 years a great deal of attention has been paid at the Cracow Uni-
versity of Technology, Poland to projects related to research on vibrations of real
buildings. These buildings were subjected to so-called paraseismic excitations
caused by mining tremors, explosions in quarries, traffic on motorways. A great
number of problems and the evidence collected in the corresponding data banks
have also been explored in the development of neural network engineering appli-
cations in Poland during the last ten years, see Waszczyszyn (2006).

In what follows we focus only on the data obtained during monitoring of vibra-
tions of a five-storey, prefabricated building (cf. Figure 27), see book by Kuźniar
(2004) and a review by Kuźniar and Waszczyszyn (2007). The corresponding
problem was an excellent playground to learn and develop ANNs, oriented on the
analysis of various problems of structural dynamics and experimental mechanics.

Simulation of fundamental periods of natural vibration. Natural periods, vi-
bration damping and mode shapes of natural vibrations characterize dynamic prop-
erties of structures. We concentrate only on the fundamental periods of natural
vibrations which were used in simple expert systems developed for the evaluation
of the technical state of buildings, subjected to mining tremors and explosions in
nearby mines or quarries, cf. Ciesielski et al. (1992).

Referring to data discussed by Kuźniar (2004) we focus on a group of 31 mon-
itored, prefabricated buildings of different types. Natural vibrations are excited
by propagated surface seismic waves so the full-scaled measured accelerograms
were used to compute 31 target patterns as T1 [sec.] periods of vibrations (the Fast
Fourier transformation procedure was applied). On the base of extensive research,
see references in Kuźniar (2004), the following input and output variables were
selected:

x 4 1 Cz b s r y T1 (192)

where: Cz – ratio of vertical unit base pressure for elastic strain; b – building
dimension along the vibration direction (longitudinal or transversal); s i EIi a,
r i GAi a – equivalent building and shear stiffnesses of the i-th internal walls
in the building plan, cf. Figure 27a.

The components of the input vector in (192)1 are arranged according to their
importance. This means that we can omit the input s but never Cz. That is why in
the analysis the following inputs were also included:

x 3 1 Cz b s x 2 1 Cz b x 1 1 Cz (193)

All the variables listed in (193) were rescaled to the range (0,1).

www.manaraa.com

294 Waszczyszyn and M. Słoński

Figure 27. Prefabricated five-storey building of WK-70 type: a) Plan, b) Sectional
elevation and points of vibration measurements

In paper by Ciesielski et al. (1992) the following empirical formula was pro-
posed:

T1
0 98
3 Cz

(194)

where Cz should be substituted from the range [50-300] MPa/m without rescal-
ing Cz.

A similar formula was derived by Kuźniar et al. (2000):

T1
1 2

3 Cz 0 003 s r b
(195)

Because of a small number of patterns P 31 only simple neural networks
were applied for all the used inputs. From among many tested networks only
FLNNs networks of architectures 4-4-1, 2-3-1 and 1-2-1 as well as the number of
their parameters NNP are listed in Table 3.

The total set of patterns used was 100 times randomly split into the training and
testing sets, completed of L 25 and T 6 patterns. In Table 3 the average errors
are shown for 100 training processes. The standard deviation P and coefficient
of correlation r P were computed for the whole set of non-scaled patterns. The
MSE and ARE errors, defined in Appendix as (A1) and (A3), were computed for
the input variables rescaled to the range (0, 1). The output variable was from the
range [0.155, 0.294] sec. so it was not rescaled.

Looking at the results we can see that network (1): 4-4-1 is superior to network
(2): 2-3-1. Both neural networks are much better than empirical formulae (194)
and (195).

Next the PCA method was applied to the reduction of number of inputs. Ap-
plying PCA, described in Point 3.4, the eigenvalues and eigenvectors j, q j were
computed for a covariance matrix S 4 4 . They are presented in Table 4.

As can be seen the errors listed in Table 3 for the more complex network (1)
of structure 4-4-1 are comparable with errors which were obtained by networks

www.manaraa.com

Selected Problems of Artificial Neural Networks Development	 295

Table 3. Errors and statistical parameters for different input variables and different
architectures of FLNNs

Table 4. Eigenvalues λ j, relative eigenvalues m j and eigenvectors q j of covariance
matrix S

(3) with only two PC inputs. The same concerns simple networks (2) and (4) with
one PC input. It is interesting that the architectures 2-3-1 give better results for PC
inputs.

In Figure 28 there are shown distributions of measured (target) fundamental
periods tn = T n

1meas [sec.] vs. the periods yn = T n
1PC, predicted by the networks 1-

2-1 and 2-3-1 with the PC single input and double inputs. It is visible that for two
PC inputs ξ1 and ξ2, nearly all the patterns predicted by network 2-3-1 are placed
within the relative error cone Bep = 5%. It is defined as an area of the relative
absolute errors of the network output |1− yn/tn|×100%≤ |Bep|.

On the base of PCA a new empirical formula was derived using only the first
principle component ξ1, see Kuźniar and Waszczyszyn (2007). In Figure 29 there
are shown the pattern points for which the following cubic regressive curve was
computed by means of the LS method:

T1 = 0.238 + 0.08ξ̄1−0.1165ξ̄ 2
1 + 0.03ξ̄ 3

1 , (196)
where

ξ̄1 = (0.0852Cz + 0.0589b + 0.0019s+0.9946r)/100. (197)

59

www.manaraa.com

296	 Waszczyszyn and M. Słoński

Figure 28. Experimental vs. neurally predicted fundamental vibration periods
computed by networks: a) 1-2-1 and x = ξ1, b) 2-3-1 and x = {ξ1,ξ2}

Figure 29. Fundamental period T1 vs. the first principal component ξ̄1

In Table 3, the errors of prediction of the fundamental period T1 by formula
(196) are listed. The results of prediction of ARE(P),σ(P) and r(P) are better
estimated by formula (196) than those by empirical formulae (194) and (195).

Simulation of DRS for soil-structure interaction problems. Response spectra
are often applied in structural design and for determining dynamic resistance of
existing buildings, cf. e.g. Eurocode 8 (2003). The response spectrum is defined
by means of the motion of a 1DOF oscillator starting from the equation:

ẍ + 2ξ ωiẋ + ω2
i x = −ag(t), (198)

where: ωi = 2π fi = 2π/Ti – angular frequency, Ti = 1/ fi – period of vibrations,

60

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 297

– damping coefficient, ag t – excitation corresponding to ground acceleration.
Knowing the measured record of accelerations, we can digitize it and use to com-
pute displacements x j x t j for fixed values of frequencies fi or periods of vi-
bration Ti at an assumed damping coefficient .

Then the Displacement Response Spectrum (DRS) can be computed as a func-
tion which maps the natural periods of oscillators into the maximal values of their
displacement response:

Sd Ti max
j

x t j;Ti (199)

In Figure 30 an example of the measured acceleration record and the corresponding
computed DRS are shown.

Figure 30. Measured accelerogram and corresponding computed DRS

The problem of soil-structure interaction is to find a response spectrum DRSb
for the excitation spectrum DRSg, i.e. to make the mapping DRSg DRSb. In
this relation DRSg is a spectrum computed on the basis of measurements made
on the ground level outside the building (measurement point 1 in Figure 27b) and
DRBb is a spectrum for measurements performed inside the building at the base-
ment level (measurement point 2). It is rather a difficult task to compute the motion
of the structure by, for instance FE models. In case of real structures and appli-
cation of FEM there are many serious problems related to modelling of boundary
conditions, connections between structural elements, material relationships, etc. A
number of these issues can be overcome due to ANNs applications, cf. references
in Kuźniar and Waszczyszyn (2007).

The problem discussed is related to medium height (5-storey), prefabricated
buildings in Legnica - Głogów Copperfield, Poland. The buildings were subjected
to paraseismic excitations caused by firings of explosives. Ten accelerograms were
randomly selected from among those measured at monitored buildings. The corre-
sponding discrete values Sdgk and Sdbk were computed for k 1 198 periods
of natural vibrations corresponding to Tk 0 02 1 3 sec.

Using static approach and the temporal window method, the following input
and output vectors were adopted, see Kuźniar (2003):

x 6 1 Sdgk 2 Sdgk 1 Sdgk Sdgk 1 Sdgk 2 Tk y Sdbk (200)

www.manaraa.com

298	 Waszczyszyn and M. Słoński

where: k = 3, ...,196 – index of discrete time for successive vibration periods Ti.
The set of 10 pairs of DRS values {{Sdgk}198

k=1,{Sdbk}196
k=3} was randomly split

into an equal number of 5 training and 5 testing sets, respectively. The correspond-
ing numbers of training and testing patterns were L = T = P/2 = 5×198 = 990.
These patterns were used for training of FLNN shown in Figure 2.4a. The Rprop
learning method was used (cf. Waszczyszyn (1999), p.20) in the applied SNNS
simulator, see Zell et al. (1994). After the cross-validation method was used the
network BPNN: 6-5-1 was designed (the acronim BPNN was used in papers by
Kuźniar (2003) instead of FLNN). The errors of this network of training and test-
ing are shown in Table 5 (acronym BPNN was used in papers by Kuźniar instead
of FLNN applied in this paper).

Table 5. Errors of training and testing for neural predictions of DRSb

The graphics of two selected DRS l#1 and DRS t#3, used for the network
training and testing are shown in Figure 31. The predicted FLNN, corresponding
to the neural network BPNN: 6-5-1 learnt by the Rprop method are marked as
BPNN DRSb.

Application of Kalman filtering. The results quoted below were obtained in
Krok’s PhD dissertation, Krok (2007) and were quoted in the review paper by
Waszczyszyn and Ziemiański (2005). The following sequential values were adopted
as input and output variables:

x(2×1) = {Sdgk−1,Sdbk−1}, y = Sdbk. (201)

62

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 299

Figure 31. Displacement learning and testing spectra DRS l#1 and DRS t#3, re-
lated to measured spectra at ground and basement levels (input DRSg and target
DRSb), vs. spectra computed by Kalman filtering (DEKF DRSb) and Rprop learn-
ing method (BPNN DRSb)

where: Sdgk 1 – value of DRSg at the ground level for discrete time k 1; Sdbk 1,
Sdbk – values of DRSb at the basement inside the building for k 1 and k discrete
times k 2 3 198.

The autoregressive time-delay input Sdbk 1 was assumed as a variable well fit-
ting the character of the Kalman filtering method. Preliminary computations were
performed using two types of neural networks, discussed in Point 4.2.1, i.e. the
feed-forward network FLNN, and recurrent network RLNN. After introductory
computations, it was stated that FLNN was superior (contrary to another paper
written also on the simulation of Response Spectra, see Krok and Waszczyszyn
(2007)). The training was performed by author’s procedures written in the MAT-
LAB language related to the simulator Neural Network Toolbox for Use with Mat-
lab, see Demuth and Beale (1998).

On the basis of numerical experiments the following functions of the Gaussian
noises were found:

Q k 0 01exp s 1 50 I R k 7exp s 1 50 (202)

where: I – unit matrix of dimension (3 3) for the j 1 2 5 neurons of the
hidden layer and (6 6) matrix for the output; s – number of the epoch in training
process. The stopping criterion was established with respect to the fixed number of
epochs S corresponding to the testing error MSE T . After introductory com-
putations the stopping criterion was related to S 500 assuming adm 1 10 4.

Training of network FLNN: 2-5-1 (in Figures 31 the corresponding results are
marked as BPNN DRSb) was performed using the algorithm DEKF as a learning
method. The same training sets were used as those discussed in the previous point

www.manaraa.com

300 Waszczyszyn and M. Słoński

where network BPNN: 6-5-1 was trained by means of the Rprop learning method.
Training and testing errors are listed in Table 5 and corresponding graphics of
selected DRS are shown in Figure 31.

Bayesian approaches. The results quoted below are mainly taken from paper by
Waszczyszyn and Słoński (2006). They have recently been completed by Słoński
with respect to the design of optimal neural networks.

In order to apply the criterion MML (Maximum of Marginal Likelihood) for
the total number of ten DRS the curve ln p was first plotted using formula
(154). In this formula the number of weights W corresponds to the number of hid-
den neurons H in the network FLNN: 2-H-1. In the introductory computation the
following values of hyperparameters were found 2 58 and 2710. These
values were kept constant during the computation. Then Type-II ML approxima-
tion, described in short in Point 5.8, was used. Starting from the Gaussian pd, the
following optimal values of hyperparameters opt 2 53 and opt 1980 were
computed.

In Figure 32 the plots of ln Mal H; are shown for the number of training
data sets of patterns L 5 and 10. These sets fully correspond to sets used in the
computations carried out in paper by Waszczyszyn and Słoński (2006). From the
plots we can conclude that the optimal number of neurons equals HMal

opt 4 for the
total number of sets L P 10 and HMal

opt 3 only if the training L 5 sets are
applied.

Figure 32. Marginal Likelihood Curves lnMal H; computed for L 5 and L
P 10 sets of patterns and validation error curve E H w;5 for the network
FLNN: 2-H-1

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 301

In the same figure the validation plots E H w;5 are drawn for 5 validation
sets and various vectors of weights. The vector wML was computed by means
of standard NN using the conjugate gradient learning method but without the pe-
nalized weight-delay function (this corresponds to the application of SNN/ML
method listed in Table 2). The vector wMAP was computed by the Bayesian net-
work SNN/MAP in which the method of Maximum A Posterior was explored. It
is visible that from the cross-validation method point of view the optimal value
(minimum of the function E H w;5 corresponds to HVal

opt 5 but the values
H 2 4 could also be acceptable. That is why the computations were carried
out for the hidden neuron numbers H 3 5 and the obtained errors are listed in
Table 5.

Results of two Bayesian approaches are presented in Table 5. These approaches
are defined according to Table 2. The Simple Bayesian network S-BNN is based
on the deterministic values of hyperparameters, which were iteratively updated. In
the analyzed network the initial values of those parameters were in 2 58 and

in 1 2
in 2710 were updated to values opt 2 58 and opt 1 2

opt 1980.
The NETLAB simulator (see Nabney (2004)) and the FBM procedures (see Neal
(2004)), were used. The Hybrid Monte Carlo method of numerical integration
(without persistence) and Gibbs sampling were applied.

The errors related to application of all the networks discussed above are shown
in Table 5. Looking at them we can conclude that results obtained by S-BNNs
and T-BNNs are very close to each other. Moreover, the complexity of neural
networks does not affect results of computations. Such a conclusion is valid only
for the data sets used. The application of 10 records seems to be too small to draw
more general conclusions.

Plots of target and Bayesian inference predictions are shown in Figure 33 for
the same DRSs as those in Figure 31, taken from paper by Waszczyszyn and
Słoński (2006). Besides the means also 2 t error bounds are plotted. It is visi-
ble that an excellent fitting of these curves to target means of DRSb takes place.

6.2 Analysis of hysteresis loops for a super-conducting cable

The Kalman filtering was applied in multilayer neural networks for the analysis
of hysteresis loops which occur in materials and structural elements subjected to
cyclic loading. This approach was developed in Krok’s PhD dissertation, Krok
(2007), in which hysteresis loops for concrete and steel specimens were simulated
and predicted. A part of dissertation, published by Krok in paper Krok (2006),
was devoted to a special problem related to the analysis of hysteresis loops in a
super-conductor cable, placed in a cryogenic box and subjected to cyclic pressure.

The superconductor was designed for the International Experimental Reactor,

www.manaraa.com

302 Waszczyszyn and M. Słoński

Figure 33. Displacement Response Spectra, target and computed by S-BNN for:
a) set l#1, b) testing set t#3

(ITER), see the website www.iter.org. The scheme of cable cross-section and me-
chanical stand-up are shown in Figure 34. Measured hysteresis loops are shown
in Figure 35a. These Figures were taken from the report by Nijihuis et al. (1998).
In Figure 35a, nine representative cycles (with Nos 1 6 11 21 and 38) were
plotted, from among 38 cycles carried-out.

Figure 34. a) Cable blocks, steel jacket and cooling tube, b) Tested cable

These experimental results, taken from the above quoted report, were analysed
in many papers, see references in book by Lefik (2005). The standard, multilayered
neural networks were also applied, see Lefik and Schrefler (2002). Results of
an extensive numerical analysis were described by Krok (2007). She focused on
selection of input variables and applied the Kalman Filtering algorithm DEKF for
learning of networks FLNN and RFLN, see Figure 13.

Following the approach by Lefik and Schrefler (2002), the hysteresis loops can
be plotted using discrete time k, numbering a sequence of K 244 points, marked

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 303

in Figure 36. After such a mapping onto time domain the Kalman filtering can be
applied in a similar manner as shown in Point 6.1. The patterns were defined to
pairs Fk dk , where: Fk dk – force and transversal displacement at the k-th instant.

Figure 35. Hysteresis loops taken from: a) Laboratory testing, b) Neural simula-
tion

Following the paper by Lefik and Shrefler quoted above, three selections of
training and testing patterns were adopted:

a) 25% or 50% of all 244 patterns were randomly selected for testing;
b) the first seven loops containing L = 180 patterns were used for training and

three final loops with T = 64 patterns served for testing;
c) two first loops containing T = 35 patterns were used for testing and the

remaining seven loops with L = 209 patterns were explored for training.
The starting inputs and output were completed from the data pairs:

x 3 1 Fk Fk 1 dk y dk 1 (203)

In the input vector the time-delay, autoregressive variable dk was applied. All the
values were rescaled to the range (0,1).

In Krok’s paper various combinations of four inputs were analysed. From
among them what superior was the following input vector:

x 4 1 Fk 1 dk 1 k 244 l k (204)

Besides conserving of the time-delay input dk, a variable l k was introduced.
It corresponds to the subsequent values: 1-1/N(1), 1-2/N(2), 1-N l N l , where
N l is the total number of measurements in the l-th loop. It is worth mentioning
that the 4-th input parameter of a loop switching character was also introduced by
Lefik and Schrefler (2002).

In Table 6 MSE errors are shown for selected networks, taken from paper by
Krok (2006). Results shown in the Table follow three cases of the testing patterns

www.manaraa.com

304	 Waszczyszyn and M. Słoński

Figure 36. Extended hysteresis loops for testing patterns: a) 25% random selec-
tion, b) two first loops

selection. Only two architectures of networks were selected, i.e. 3-15-1 and 4-
4-5-1, corresponding to inputs (203) and (204). The numbering of study cases
corresponds to that in Krok’s paper.

Table 6. Testing errors for different networks with Kalman filtering applied to the
analysis of hysteresis loops in super-conducting cable

Two hidden layer network 4-4-5-1 has the number of network parameter NNP
= 51, whereas the network 3-15-1 has NNP = 76 for FLNN and NNP = 92 for
RLNN. The testing errors are comparable for cases a) and b) but the MSE(T) error
for c) is significantly higher. The influence of the testing set selection is visible in
Figure 36. The testing fitting curves are very close to the target curves in cases a)
and b). In case c) the predicted curve for the first three loops does not fit well the
target curve shown in Figure 36b.

68

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 305

6.3 Bayesian inference in the microstructure analysis

A great deal of attention is devoted to multiscale analysis of heterogeneous mate-
rials. Computational Homogenization (CH) has been quite recently proposed as
a method based on the advanced computer hard- and software, see e.g. PhD dis-
sertations by Kouznetsova (2002) and Kaczmarczyk (2006). CH is a two levels
approach in which refined mechanical formulation is applied on the microscale
level and the implicit formulation is used on the macroscale level of observa-
tion. The microlevel is represented by RVE (Representative Volume Element)
which is placed in an integration point of the Finite Element, representative for the
macrolevel, see Figure 37.

Figure 37. a) Main scheme of Computational Homogenization, b) Micro-macro
transition

The analysis of RVE plays a basic role in CH. In this area the basic question
concerns the identification of characteristics of RVE. Among them the characteris-
tic length L of RVE should be defined and, moreover, its value should be estimated.
The paper by Kaczmarczyk and Waszczyszyn (2007) focused on computation of
the characteristic length L of a plane RVE shown in Figures 38, 40 applying FEM
and Bayesian inference explored in the T- BNN network.

The characteristic length L reflects the micro-macro scales interaction, me-
chanical properties of microstructure ingredients and nonlinear deformations on
the micro-macro levels. These effects can be experimentally tested by means of
the indentation test, see Figure 39a. A rigid indenter is pressed in a deformable
matrix, so a great stress concentration and deformation localization occur in the
vicinity of indenter application. These phenomena need a great increase of the FE
mesh density in the stress and deformation regions, see Figure 39b.

The plain strain Boundary-Value-Problems (BVPs) were formulated on the
micro- and macro levels. It was assumed that the aluminium matrix has elasto-
plastic properties and the inclusions are made of elastic silicon (their mechanical
parameters are shown in Figure 38). The second order continuum with micros-
trains was assumed to analyze the RVE deformation. The displacement boundary

www.manaraa.com

306 Waszczyszyn and M. Słoński

Figure 38. a) Discretization of RVE, b) Deformation of RVE in the vicinity of
indenter

constraints for RVE were applied and friction between the indenter and the de-
formable continuum was neglected.

A sequence of BVPs was analysed performing 34 incremental steps h to com-
pute the equilibrium paths F h , where: F , h – force and vertical displacements
shown in Figure 39a. A deformation of RVE in the vicinity of the indenter appli-
cation is shown in Figure 38b. The equilibrium paths were computed for three,
fixed in advance, values of the length L = 0.001, 0.002 and 0.004 mm.

The vector of sequential input variables was composed of 105 variables:

x 105 1 h1 h2 h35 F1 F2 F35 s1 s2 s35 (205)

where s is the width of indenter adherence to deformable continuum, see Fig-
ure 39a.

Prior distribution of the characteristic length p L was estimated by Gamma
pdf assuming in (178) L, a 2 and b 0 5. It is worth noting that this prior
has no reference to any data and prior estimation about what the true relationship
might be.

Assuming three input variables, i.e. x h F s , a set of 344 pseudo-experiments
was formulated performing 34 incremental steps corresponding to input vector
(205). In order to diminish the dimensionality of the input space the PCA method
was applied. This analysis gave the following eigenvalues

1 0 055 2 8 69 10 6
3 4 83 10 6 (206)

In the following analysis only one PC, i.e. 1 h F s was conserved.
The Bayesian neural network T-BNN: 1-16-1 was applied and randomly se-

lected, the training and testing sets were used, composed of L 200 and T 144
patterns, respectively. The training process, corresponding to the Bayesian infer-
ence, was preceded according to that described in Point 6.1. In Figure 40 the

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 307

Figure 39. a) Indentation test, b) Increase of FE mesh density in the vicinity of
indenter application

relationship L̄ 1 is shown for the mean and 3 t 3 N 3 L. It is visible that
the distance between sigma bar curves is small in the region with a great amount
of data.

Figure 40. a) Mean and 3 sigma bar curves for relation L̄ 1 computed by T-BNN

www.manaraa.com

308	 Waszczyszyn and M. Słoński

6.4 Selected problems from mechanics of concrete
In this Point two problems from mechanics of concrete are briefly discussed. The
first problem concerns the design of High Performance Concrete (HPC) mixes
from the point of view of concrete strength f ′c prediction. The other problem deals
with estimation of the failure number of loading cycles applied to specimens made
of ordinary concretes. In both presented problems the focus is put on applications
of BNNs.

HCP strength prediction. The prediction of compressive strength f ′c of High Per-
formance Concrete (HPC) by the standard NNs and BNNs is discussed in paper by
Słoński (2007). 28 data sets composed of 346 mixes, collected by Kasperkiewicz
et al. (1995), were used. The HPC data bases are related to six input variables and
an output scalar variable:

x = {C,W,S,Su,FA,CA}, y = f ′c, (207)

where the input variables are amounts of the concrete mix ingredients in kg/m3,
corresponding to: C – cement, W – water, S – silica, Su – superplasiticizer, FA
– fine aggregate, and CA – coarse aggregate. The output variable is the 28-day
compressive strength f ′c [MPa].

The regression problem of HPC strength prediction was analysed in many pa-
pers, using also ANNs, see references in the PhD dissertation by Jakubek (2007).
Now let us concentrate on the application of the Bayesian networks FLNN/MAP
and T-BNN, see paper by Słoński (2009).

The network FLNN: 6-10-1 with bipolar sigmoid hidden neurons and linear
output was used. The NETLAB Toolbox, see Nabney (2004) and MCMCStuff
Toolbox, see Vehtari and Vanhatalo (2006) were used to both learn the networks
FLNN, T-BNN and GP-BNN. The total number of patterns P = 340 was randomly
split into the training and testing sets with L = 226 and T = 114 patterns, re-
spectively. In the case of SNN the conjugate gradient method was applied and
the computed weight vector wMAP gave values of errors and statistical parameters
listed in Table 7.

Table 7. Errors of training and testing processes for neural prediction of HPC
strength

72

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 309

For Bayesian neural network T-BNN, Gaussian noise model with constant vari-
ance was defined and hierarchical Gaussian prior was assumed. Learning and pre-
diction were done using Gibbs sampling for hyperparameters and Hybrid Monte
Carlo (HMC) method for weights. The MCMCStuff Toolbox software was ap-
plied, see Vehtari and Vanhatalo (2006). The main HMC parameters had the fol-
lowing values: length of chain was 100, step size was 0.5 and persistence param-
eter was 1.0. The burn-in stage contained 204 iterations and the actual sampling
800 iterations from which only 18 samples were used for HPC prediction.

The computations by T-BNN gave the values of errors and statistical parame-
ters presented in Table 7.

For testing patterns also 1 error bars were computed, corresponding to the
estimated noise standard deviation (BNN 7 3 MPa vs. SNN 7 7 MPa). In
Figure 41 the measured and computed values for both neural models are presented.

20 40 60 80 100 120 140
20

40

60

80

100

120

140

measured f
c
 [MPa]

pr
ed

ic
te

d
f c [

M
Pa

]

training patterns
testing patterns
1 error bars

20 40 60 80 100 120 140
20

40

60

80

100

120

140

measured f
c
 [MPa]

pr
ed

ic
te

d
f c [

M
Pa

]

training patterns
testing patterns
1 error bars

Figure 41. Predicted HPC compressive values vs. measured values using neural
networks T-BNN (left) and FLNN/MAP (right)

On the base of discussed case study for HPC strength prediction some conclu-
sions can be drawn. The Bayesian approach gave significantly better prediction of
the mean value of HPC compressive strength comparing with predictions by the
standard FLNNs. On the other hand, computations for Bayesian neural network
T-BNN is much more labour-consuming than for the standard neural model.

Concrete fatigue failure prediction. The second example concerns prediction of
concrete fatigue failure using the true Bayesian neural network T-BNN and Gaus-

www.manaraa.com

310	 Waszczyszyn and M. Słoński

sian Process model GP-BNN, see Słoński (2006, 2009). Concrete failure is defined
as a number of loading cycles N which cause fatigue damage of a plain concrete
specimen. This problem is based on a data set of 216 tests on concrete specimens,
made in eight laboratories, see Furtak (1984). The patterns were randomly split
into the training and testing sets with L = 144 and T = 72 patterns, respectively.

Following this paper, four input variables and a scalar output were adopted:

x = { fc,χ ,R, f}, y = logN, (208)

where: χ = fcN/ fc – ratio of compressive fatigue strength of concrete fcN and
strength fc, R = σmin/σmax – ratio of minimal and maximal strengths in compres-
sive cycle of loading, f [Hz] – frequency of cyclic loading, N – number of load
cycles associated with the fatigue failure.

Network FLNN: 4-7-1 was used of structure and neuron type selection as the
network used in the problem discussed above. The GP model was defined using a
squared exponential covariance function with the kernel components of the form
similar to that defined in (183):

k(xn,xm) = θ0 exp
�

− 1
2

4

∑
i=1

ηi(xn
i − xm

i)2
�

+ θ2. (209)

Both Bayesian approaches, i.e Bayesian inference and Gaussian Process in the
networks T-BNN and GP-BNN were applied. The computations were carried out
by means of the NETLAB Toolbox, see Nabney (2004) and MCMCStuff Toolbox,
see Vehtari and Vanhatalo (2006). In Table 8 the values of errors and statistical
parameters are listed.

Table 8. Comparison of learning and testing errors and statistical parameters for
standard network FLNN, Bayesian network T- BNN and Gaussian process based
network GP-BNN

The true Bayesian neural network T-BNN and the network GB-BNN basing
on the Gaussian process have very similar prediction capabilities, see Figure 42. It
is worth emphasizing that learning and prediction for GP model is much easier to
implement than for T-BNN.

74

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 311

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

measured log N

pr
ed

ic
te

d
lo

g
N

training data, r = 0.893
testing data, r = 0.868

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

measured log N

pr
ed

ic
te

d
lo

g
N

training data, r = 0.904
testing data, r = 0.866

Figure 42. Predicted vs. measured fatigue failure of concrete for training and
testing patterns for T-BNN (left) and GP-BNN (right)

Bibliography

Bailer-Jones, C., Sabin, T., MacKay, D. and Withers, P. (1997). Prediction of
deformed and annealed microstructures using Bayesian neural networks and
Gaussian processes. In Proc. of the Australia-Pacific Forum on Intelligent Pro-
cessing and Manufacturing of Materials.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford Univer-
sity Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bishop, C. M. and Tipping, M. E. (2003). Bayesian regression and classification.
In J. Suykens, S. B. C. M., G. Horvath and Vandewalle, J., editors, Advances
in Learning Theory: Methods, Models and Applications, NATO Science Series
III: Computer and Systems Sciences, pages 267–285. IOS Press.

Buntine, W. L. and Weigend, A. S. (1991). Bayesian back propagation. Complex
Systems, 5(6):603–64.

Ciesielski, R., Kuźniar, K., Macia̧g, E. and Tatara, T. (1992). Empirical formulae
for fundamental natural periods of buildings with load bearing walls (in polish).
Archives of Civil Engineering, 38:291–199.

Demuth, H. and Beale, M. (1998). Neural Network Toolbox: For use with MAT-
LAB: User’s Guide, Version 3. The Mathworks Inc.

Eurocode 8 (2003). Design of Structures for Earthquake Resistance.

www.manaraa.com

312 Waszczyszyn and M. Słoński

Foresee, F. D. and Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian
learning. In IEEE International Conference on Neural Networks (IJCNN’97),
volume III, pages III–1930–III–1935. IEEE.

Furtak, K. (1984). Strength of the concrete under multiple repeated loads, (in
Polish). Arch. of Civil Eng., 30.

Haykin, S. S. (1999). Neural Networks: A Comprehensive Introduction. Prentice
Hall.

Haykin, S. S. (2001). Kalman Filtering and Neural Networks. John Wiley & Sons,
Inc.

Jakubek, M. (2007). Application of Neural Networks in Experimental Mechanics
of Structures and Materials, (in Polish). Ph.D. thesis, Institute for Computa-
tional Civil Engineering, Cracow University of Technology.

Jang, J. S. R., Sun, C. T. and Mizutani, E. (1997). Neuro-Fuzzy and Soft Comput-
ing. Prentice Hall.

Kaczmarczyk, Ł. (2006). Numerical Analysis of Multiscale Problems of Mechan-
ics of Hetero-Homogeneous Continua (in Polish). Ph.D. thesis, Institute for
Computational Civil Engineering, Cracow University of Technology.

Kaczmarczyk, Ł. and Waszczyszyn, Z. (2007). Identification of characteristic
length of micro-structure for second order multiscale model by Bayesian neural
networks. Computer Assisted Mech. Eng. Sci., 14:183–196.

Kasperkiewicz, J., Racz, J. and A.Dubrawski (1995). HPC strength prediction
using artificial neural network. J. Comp. in Civ. Engrg., 9(4):1–6.

Korbicz, J., Obuchowicz, A. and Uciński, D. (1994). Artificial Neural Networks:
Foundations and Applications (in Polish). Akademicka Oficyna Wydawnicza.

Kouznetsova, V. (2002). Computational Homogenization for the Multi-Scale Anal-
ysis of Multi-Phase Materials. Ph.D. thesis, Technische Universiteit Eind-
hoven, The Netherlands.

Krok, A. (2006). Simulation of hysteresis loops for a superconductor using neural
networks with Kalman filtering. Computer Assisted Mech. Eng. Sci., 13:575–
582.

Krok, A. (2007). Analysis of Selected Problems of Mechanics of Structures and
Materials by ANN and Kalman Filtering (in Polish). Ph.D. thesis, Institute for
Computational Civil Engineering, Cracow University of Technology.

Krok, A. and Waszczyszyn, Z. (2007). Kalman filtering for neural prediction of re-
sponse spectra from mining tremors. Computers & Structures, 85:1257–1263.

Kuźniar, K. (2003). BP Neural network computation of Response Spectra us-
ing a subpicture idea. In L., R. and J, K., editors, Proc. Neural Net-
works and Soft Computing, pages 754–759. T.U. of Czȩstochowa, Springer,
Czȩstochowa/Zakopane.

Kuźniar, K. (2004). Analysis of vibrations of medium height buildings subjected
to mining tremors with application of neural networks (in Polish). Cracow
University of Technology.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 313

Kuźniar, K., Macia̧g, E. and Waszczyszyn, Z. (2000). Computation of fundamental
natural periods of vibrations of medium-hight buildings by neural networks.
Archives of Civil Engineering, 46:515–523.

Kuźniar, K. and Waszczyszyn, Z. (2007). Neural networks for the simulation
and identification of building subjected to paraseismic excitations. In Lagaros,
N. D. and Tsompanakis, Y., editors, Intelligent Computational Paradigms in
Earthquake Engineering. Idea Group Publishing.

Lampinen, J. and Vehtari, A. (2001). Bayesian approach for neural networks –
review and case studies. Neural Networks, 14(3):7–24. (Invited article).

Lefik, M. (2005). Application of Artificial Neural Networks in Mechanics and
Engineering (in Polish). Łódź University of Technology.

Lefik, M. and Schrefler, B. (2002). One-dimensional model of cable-in-conduit
superconductor under cyclic loading using artificial neural networks. Fusion
Engineering and Design, 60:105–117.

Lou, K.-N. and Perez, R. (1996). A new system identification technique using
Kalman filtering and multilayer neural networks. Artificial Intelligence in En-
gineering, 10:1–8.

MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3):415–
447.

MacKay, D. J. C. (1998). Introduction to Gaussian processes. In Bishop, C. M.,
editor, Neural Networks and Machine Learning, NATO ASI Series, pages 133–
166. Springer.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms.
Cambridge University Press.

Masters, T. (1993). Practical Neural Network Recipes in C++. Academic Press.
Nabney, I. T. (2004). Netlab: Algorithms for Pattern Recognition. Springer-Verlag,

London.
Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid

Monte Carlo method. Technical Report CRG-TR-92-1.
Neal, R. M. (2004). Software for Flexible Bayesian Modeling and Markov Chain

Sampling. Technical report, University of Toronto.
Nijihuis, A., Noordman, N. and ten Kate, H. (1998). Mechanical and Electrical

testing of an ITER CS1 Model Coil Conductor under Tramsferse Loading in a
Cryogenic Press, Preliminary report. Technical report, University of Twente.

Pham, D. and Liu, X. (1995). Neural Networks for Identification, Prediction and
Control. Springer.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. The MIT Press, Cambridge, Massachusetts.

Rojas, R. (1996). Neural Networks - A Systematic Introduction. Springer.
Sato, T. and Sato, M. (1997). Structural identification using neural networks and

kalman filtering. JSCE, 14:23–32.

www.manaraa.com

314 Waszczyszyn and M. Słoński

Słoński, M. (2005). Prediction of concrete fatigue durability using Bayesian neural
networks. Computer Assisted Mech. Eng. Sci., 12:259–265.

Słoński, M. (2006). Bayesian regression approaches on example of concrete fa-
tigue failure prediction. Computer Assisted Mech. Eng. Sci., 13:655–668.

Słoński, M. (2007). HPC strength prediction using Bayesian neural networks.
Computer Assisted Mech. Eng. Sci., 14:345–352.

Słoński, M. (2009). A comparison between Bayesian neural networks and other
machine learning methods for predicting properties of concrete. Proc. of 18th
International Conference on Computer Methods in Mechanics, CMM-2009,
Zielona-Góra, Poland.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1:211–244.

Tipping, M. E. (2004). Bayesian Inference: An Introduction to Principles and
Practice in Machine Learning. In O. Bousquet, U. v. L. and Rätsch, G., editors,
Advanced Lectures on Machine Learning, volume 3176 of Lecture Notes in
Computer Science, pages 41–62. Springer.

Twomey, J. M. and Smith, A. E. (1997). Validation and verification. In Kartam,
N., Flood, I. and Garrett, J. H., editors, Neural Networks for Civil Engineers:
Fundamentals and Applications. ASCE, New York.

A. Vehtari and J. Vanhatalo. MCMC Methods for MLP and GP and Stuff (for Mat-
lab) V2.1. A User Manual Laboratory of Computational Engineering, Helsinki
University of Technology

Waszczyszyn, Z. (1999). Neural Networks in the Analysis and Design of Struc-
tures. CISM Courses and Lectures No. 404. Springer, Wien-New York.

Waszczyszyn, Z. (2006). Artificial neural networks in civil and structural engi-
neering: Ten years of research in Poland. Computer Assisted Mech. Eng. Sci.,
13:489–512.

Waszczyszyn, Z. and Słoński, M. (2006). Bayesian neural networks for predic-
tion of response spectra. Foundations of Civil and Environmental Engineering,
7:343–361.

Waszczyszyn, Z. and Ziemiański, L. (2005). Neural networks in the identification
analysis of structural mechanics problems, Ch. 7. In Mróz, Z. and Stavroulakis,
G., editors, Parameter Identification of Materials and Structures, CISM Lec-
ture Notes No.469, pages 265–340. Springer, Wien - New York.

Zell, A., Mache, N., Sommer, T. and et. al. (1994). Stuttgart Neural Network
Simulator. User manual, ver. 3.2. Technical report, University of Stuttgart,
Germany.

www.manaraa.com

Selected Problems of Artificial Neural Networks Development 315

Appendices

A1 Definitions of Errors for Discrete Sets of Data

The following error measures are used:
– Mean-Square-Error (MSE) and Root-Mean-Square error (RMS):

MSE 2
ML

2
LS

2
MAP

1
N

N

n 1
tn y xn;w 2 (A1)

RMS MSE ML LS MAP

1
N

N

n 1
tn y xn;w 2 (A2)

– Average Absolute Relative Error (ARE)

ARE
1
N

N

n 1
1 yn tn 100% (A3)

– Coefficient of correlation (linear regression)

r
cov x y

x y

N
n 1 xn x̄ N

n 1 yn ȳ

N
n 1 xn x̄ 2 N

n 1 yn ȳ 2
(A4)

where:

x̄
1
N

N

n 1

xn ȳ
1
N

N

n 1

yn– means of vectors x and y (A5)

www.manaraa.com

316	 Waszczyszyn and M. Słoński

A2 Acronyms

80

www.manaraa.com

CHAPTER 6

Neural Networks: Some Successful Applications in
Computational Mechanics

Manolis Papadrakakis, Nikos D. Lagaros and Michalis Fragiadakis

Institute of Structural Analysis & Seismic Research,
School of Civil Engineering,

National Technical University Zografou Campus, Athens 15780, Greece

Abstract This article presents recent applications of neural
computations in the field of stochastic finite element analysis of
structures and earthquake engineering. The incorporation of Neural
Networks (NN) in this type of problems is crucial since it leads to
substantial reduction of the excessive computational cost. Earthquake-
resistant design of structures using Probabilistic Safety Analysis (PSA)
is an emerging field in structural engineering. The efficiency of soft
computing methodologies is investigated when incorporated into the
solution of computationally intensive earthquake engineering problems
considering uncertainties.

1 Introduction
Over the last ten years artificial intelligence techniques like Neural Networks
(NN) have emerged as a powerful tool that could be used to replace time
consuming procedures in many scientific or engineering applications. The fields
where NN have been successfully applied are: (i) pattern recognition, (ii)
regression (function approximation/fitting) and (iii) optimization. In the past the
application of NN was mostly used for predicting the behavior of structural
systems in the context of structural optimal design (McCorkle et. al 2003,
Papadrakakis and Lagaros 2002], structural damage assessment (Zacharias et. al
2004), the evaluation of buckling loads of imperfect structures (Waszczyszyn et
al. 2002) or structural reliability analysis (Hurtado and Alvarez 2002, Nie and
Ellingwood 2004,Papadrakakis et al. 1996). This study presents recent
developments in the applications of NN in the field of stochastic finite element
and probabilistic analysis of structures.

Many sources of uncertainty (material, geometry, loads, etc) are inherent in
structural systems. Probabilistic analysis of structures leads to safety measures
that a design engineer has to take into account due to the aforementioned
uncertainties. Probabilistic analysis problems, especially when seismic loading

www.manaraa.com

318 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

is considered, are highly computationally intensive tasks since, in order to
obtain the structural behaviour, a large number of dynamic analyses (e.g modal
response spectrum analysis, or nonlinear timehistory analysis) are required. In
this work two metamodel-based applications are considered in order to reduce
the excessive computational cost. The efficiency of a trained NN is
demonstrated, where a network is used to predict maximum interstorey drift
values due to different sets of random variables. As soon as the maximum
interstorey drift is known, the limit-state probabilities are calculated by means of
Monte Carlo Simulation (MCS). In the first application the probability of
exceedance of a limit-state is obtained when the Multi-modal Response
Spectrum analysis is adopted (Tsompanakis et al. 2008). In the second
application fragility analysis of a ten-storey moment resisting steel frame is
evaluated where limit-state fragilities are determined by means of nonlinear time
history analysis (Lagaros and Fragiadakis 2007).

The field of structural reliability has been developed significantly during the
last twenty years and has been documented in an increasing number of
publications (Schuëller 2005). In this work the probabilistic safety analysis of
framed structures under seismic loading conditions is investigated based on the
methodology proposed by Lagaros and Fragiadakis (2007). Both randomness of
ground motion excitation (that influence the seismic demand level) and material
properties (that affect the structural capacity) are taken into consideration.
Additionally, a computationally efficient procedure, proposed in a previous
work by Lagaros et al. (2005), for the simulation of homogeneous non-Gaussian
stochastic fields with prescribed target marginal distribution and spectral density
function is implemented.

The assessment of the bearing capacity of framed structures, in terms of
maximum interstorey drift, is determined via non-linear time history analysis.
Probabilistic Safety Analysis (PSA) using the Monte-Carlo Simulation (MCS)
method and non-linear time history analysis results in a highly computationally
intensive problem. In order to reduce the computational cost, NN are employed.
For the training of the NN a number of Intensity Measures (IMs) are used in
order to accurately predict the maximum interstorey drift values. The IMs
adopted in the present study can be classified either as seismic record
dependent, or as both structure and record dependent. Via the presented PSA
procedure fragility curves are obtained for different hazard levels. In addition
the probability of structure’s failure is derived as a limit state function of
seismic intensity.

2 Multi-layer Perceptrons
A multi-layer perceptron is a feed-forward neural network consisting of a
number of units (neurons) linked together. Training attempts to create a desired

www.manaraa.com

Neural Networks: Some Successful Applications 319

relation in an input/output set of learning patterns. A learning algorithm tries to
determine the weight parameters, in order to achieve the right response for each
input vector applied to the network. The numerical minimization algorithms
used for the training generate a sequence of weight matrices through an iterative
procedure. To apply an algorithmic operator A a starting weight matrix w(0) is
needed, while the iteration formula can be written as follows

 (t+1) (t) (t) (t)w = (w)=w +�wA (1)

All numerical methods applied for the NN training are based on the above
formula. The changing part of the algorithm �w(t) is further decomposed into
two parts as

(t) (t)

t�w =a d (2)

where d(t) is a desired search direction of the move and at the step size in that
direction.

The training methods can be divided into two categories. Algorithms that use
global knowledge of the state of the entire network, such as the direction of the
overall weight update vector, which are referred to as global techniques. In
contrast, local adaptation strategies are based on weight specific information
only, such as the temporal behaviour of the partial derivative of this weight. The
local approach is more closely related to the NN concept of distributed
processing in which computations can be made independent to each other.
Furthermore, it appears that for many applications local strategies achieve faster
and reliable prediction than global techniques despite the fact that they use less
information (Schiffmann et al. 1993).

2.1 Global Adaptive Techniques

The algorithms most frequently used in the NN training are the steepest descent,
the conjugate gradient and the Newton’s methods with the following direction
vectors:
Steepest descent method: (t) (t)d (w)� �PE
Conjugate gradient method: (t) (t) (t 1)

t 1d (w) d �
�� �P � QE where �t-1 is defined as:

 t 1 t t t 1 t 1/ Fletcher-Reeves� � �Q � R RE E E EP P P P

Newton’s method:
1(t) (t) (t)d H(w) (w)

�
* +� � P/ 0 E .

The convergence properties of the optimization algorithms for differentiable
functions depend on the properties of the first and/or second derivatives of the
function to be optimized. When optimization algorithms converge slowly for
NN problems, this suggests that the corresponding derivative matrices are
numerically ill-conditioned. It has been shown that these algorithms converge

www.manaraa.com

320 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

slowly when rank-deficiencies appear in the Jacobian matrix of a NN, making
the problem numerically ill-conditioned (Lagaros and Papadrakakis 2004).

2.2 Local Adaptive Techniques

To improve the performance of weight updating, two approaches have been
proposed, namely Quickprop (Fahlman 1988) and Rprop (Riedmiller and Braun
1993).

The Quickprop method
This method is based on a heuristic learning algorithm for a multi-layer
perceptron, developed by Fahlman (1988), which is partially based on the
Newton’s method. Quickprop is one of most frequently used adaptive learning
paradigms. The weight updates are based on estimates of the position of the
minimum for each weight, obtained by solving the following equation for the
two following partial derivatives

t-1 t

ij ij

 and
w w

F F
F F
E E

 (3)

and the weight update is implemented as follows

t

ij(t) (t-1)
ij ij

t-1 t

ij ij

w
w w

-
w w

F
F

�
F F
F F

E

E E

 (4)

The learning time can be remarkably improved compared to the global adaptive
techniques.

The Rprop method
Another heuristic learning algorithm with locally adaptive learning rates based
on an adaptive version of the Manhattan-learning rule and developed by
Riedmiller and Braun (1993) is the Resilient backpropagation abbreviated as
Rprop. The weight updates can be written

 (t) (t) t
ij ij

ij

w � sgn
w

� �F
� � � �� �F� �

E
 (5)

where

www.manaraa.com

Neural Networks: Some Successful Applications 321

(t-1) t t-1
ij max

ij ij

(t) (t-1) t t-1
ij ij min

ij ij
(t-1)
ij

min(# � ,�), if 0
w w

� max(b � ,�), if 0
w w

� , otherwise

F F	 R R N� F F�
� F F�� R R "�

F F�
�
�
��

E E

E E

 (6)

where �=1.2, b= 0.5, �max=50 and �min=0.1 (Riedmiller, 1994). The learning
rates are bounded by upper and lower limits in order to avoid oscillations and
arithmetic underflow. It is interesting to note that, in contrast to other
algorithms, Rprop employs information about the sign and not the magnitude of
the gradient components.

3 Fragility Analysis using Monte Carlo Simulation
Extreme earthquake events may produce extensive damage to structural systems
despite their low probabilities of occurrence. It is therefore essential to establish
a reliable procedure for assessing the seismic risk of real-world structural
systems. Probabilistic safety analysis provides a rational framework for taking
into account the various sources of uncertainty that may influence structural
performance under seismic loading conditions. The core of PSA is seismic
fragility analysis, which provides a measure of the safety margin of a structural
system for different limit states.

In this section the probabilistic safety analysis of framed structures under
seismic loading conditions is investigated. Randomness of ground motion
excitation (that influences seismic demand) and of material properties (that
affect structural capacity) are taken into consideration using Monte Carlo
Simulation. The capacity assessment of steel frames is determined using
nonlinear timehistory analysis. The probabilistic safety analysis using Monte-
Carlo Simulation and nonlinear time history analysis results in a
computationally intensive problem. In order to reduce the excessive
computational cost, techniques based on NN are implemented. For the training
of the NN a number of IMs are derived from each earthquake record, for the
prediction of the level of damage, which is measured by means of maximum
interstorey drift values �max.

The seismic fragility of a structure FR(x) is defined as its limit-state

probability, conditioned on a specific peak ground acceleration, spectral
velocity, or other control variable consistent with the specification of seismic
hazard

www.manaraa.com

322 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

 () [/]R iF x P LS PGA x� � (7)

where LSi represents the corresponding ith limit state and the peak ground PGA
is the control variable. If the annual probabilities of exceedance P[PGA=x] of
specific levels of earthquake motion are known, then the mean annual frequency
of exceedance of the ith limit state is calculated as follows:

 [] () []i R
x

P LS F x P PGA x� �� (8)

Eq. (8) can be used for taking decisions about, for example, the adequacy of a
design or the need to retrofit a structure. In the present study the aim is to
evaluate the fragility FR(x). Once the fragility is calculated the extension to Eq.
(8) is straightforward.

Often FR(x) is modelled with a lognormal probability distribution, which
leads to an analytic calculation. In the present study Monte Carlo Simulation
(MCS) with improved Latin Hypercube Sampling (iLHS) for the reduction of
the sampling size, is adopted for the numerical calculation of FR(x). Numerical
calculation of Eq. (7) provides a more reliable estimate of the limit state
probability, since it is not necessary to assume that seismic data follow a
lognormal distribution. However, in order to calculate the limit state probability,
a large number of nonlinear dynamic analyses are required for each hazard
level, especially when the evaluation of extremely small probabilities is needed.

The methodology requires that MCS has to be performed at each hazard
level. Earthquake records are selected randomly and scaled to a common
intensity level that corresponds to the hazard level examined. Scaling is
performed using the first mode spectral acceleration of the 5% damped spectrum
(Sa(T1,5%)). Therefore, all records are scaled in order to represent the same
ground motion intensity in terms of Sa(T1,5%). Earthquake loading is
considered as two separate sources of uncertainty, ground motion intensity and
the details of ground motion. The first uncertainty refers to the general severity
of shaking at a site, which may be measured in terms of any IM such as PGA,
Sa(T1,5%), Arias intensity, etc. The second source refers to the fact that,
although different acceleration time histories can have their amplitudes scaled to
a common intensity, there is still uncertainty in the performance, since IMs are
imperfect indicators of the structural response. The first source is considered by
scaling all records to the same intensity level at each limit state. The second
source is treated by selecting natural records as random variables from a
relatively large suite of scenario based records. The concept of considering
separately seismic intensity and the details of ground is the backbone of the
Incremental Dynamic Analysis (IDA) method (Vamvatsikso and Cornell 2002),
while Porter et al. (2002) have also introduced intensity and different records as
two separate uncertain parameters in order to evaluate the sensitivity of

www.manaraa.com

Neural Networks: Some Successful Applications 323

structural response to different uncertainties.
The random parameters considered in this study are the material properties

and more specifically the modulus of elasticity E and the yield stress fy, as well
as the details of ground motion where a suite of scenario based earthquake
records is used. The material properties are assumed to follow the normal
distribution while the uniform distribution is assumed for the records in order to
select them randomly from a relatively large bin of natural records. The first two
variables are sampled by means of the iLHS technique in order to increase the
efficiency of the sampling process.

In reliability analysis the MCS method is often employed when the
analytical solution is not attainable and the failure domain can not be expressed
or approximated by an analytical form. This is mainly the case in problems of
complex nature with a large number of basic variables where all other reliability
analysis methods are not applicable. Expressing the limit state function as
G(x)<0, where x=(x1,x2,...,xM)T is the vector of the random variables, the
probability of exceedance can be obtained as

 LS x
G(x) 0

P f (x)dx
!

� (9)

where fx(x) denotes the joint probability of failure for all random variables.
Since MCS is based on the theory of large numbers (N5) an unbiased estimator
of the probability of failure is given by

N

LS j
j 1

1P I(x)
N

5

�5

� � (10)

where I(xj) is a Boolean vector indicating failure and non-failure simulations. In
order to estimate PLS an adequate number of Nsim independent random samples
is produced using a specific probability density function for the vector x. The
value of the failure function is computed for each random sample xj and the
Monte Carlo estimation of PLS is given in terms of the sample mean by

 H
LS

sim

N
P

N
S (11)

where NH is the number of failure simulations, where the maximum interstorey
drift value exceeds a threshold drift for the limit state examined. In order to
calculate Eq. (11) Nsim nonlinear time history analyses have to be performed at
each hazard level. Clearly the computational cost of performing so many
nonlinear dynamic analyses, even when an efficient sampling reduction
technique (such as iLHS) is used, is prohibitive. In order to reduce the
computational cost, properly trained NN are implemented.

www.manaraa.com

324 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

et al.

Table 1

PGA
SaC

www.manaraa.com

Neural Networks: Some Successful Applications 325

Sa c TSaC Sa T
Sa T

c

T

Table 2.

PGA

4 NN-based Seismic Fragility Analysis

www.manaraa.com

326 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

Table 3.

Figure 1.

fy E fy

www.manaraa.com

Neural Networks: Some Successful Applications 327

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

PGA (g)

F R LS1, (0.2%)

LS2, (0.8%)

LS3, (1.8%)

LS4, (3.5%)

LS5, (6.0%)

Figure 2.

www.manaraa.com

328 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Simulations

F R

PGA=1.25
PGA=1.1
PGA=0.9
PGA=0.8
PGA=0.7
PGA=0.56
PGA=0.49
PGA=0.41

Figure 3.

0

1

2

3

4

5

6

7

8

9

10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Maximum Interstorey Drift

Te
st

in
g

sa
m

pl
e

PGA=0.05 - real

PGA=0.05 - NN

PGA=0.27 - real

PGA=0.27 - NN

PGA=0.56 - real

PGA=0.56 - NN

PGA=0.90 - real

PGA=0.90 - NN

Figure 4. max

www.manaraa.com

Neural Networks: Some Successful Applications 329

5 Metamodel Assisted Methodology for Validating the EC8
Approach

et al.

5.1 Metamodel Assisted Methodology

pexceed

Table 4.

www.manaraa.com

330 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

Figure 5.

5.2 Seismic Probabilistic Analysis

,

www.manaraa.com

Neural Networks: Some Successful Applications 331

Table 5.

T (sec)

SA
 (m

/s
ec

2)

Figure 6.

www.manaraa.com

332 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

T (sec)

SA
 (m

/s
ec

2)

Figure 7.

Table 6.

www.manaraa.com

Neural Networks: Some Successful Applications 333

x

www.manaraa.com

334 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

0.00

0.50

1.00

1.50

2.00

2.50

0 50 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0

10
00

00

Simulations

p e
xc

ee
d (

%
)

Mod. Elast., Earth.
Cross Sect., Earth.
Mod. Elast., Cross Sect., Earth.

Figure 8. pexceed

Table 7. pexceed

6 Conclusions

www.manaraa.com

Neural Networks: Some Successful Applications 335

References
An Empirical Study of Learning Speed in Back-Propagation

Networks
Arch. Comp. Meth.

Engrg. (State of the art reviews) 8

Comp. Meth. Appl. Mech. Engrg. 191
Geotechnical Earthquake Engineering

Earthquake Spectra 23

Adv. in Engrg. Software 35

Comp.
Meth. Appl. Mech. Engrg. 194

Comp. Meth. Appl. Mech.
Engrg. 192

Prob. Engrg. Mech..
19

Comp. Meth. Appl. Mech. Engrg. 136

www.manaraa.com

336 M. Papadrakakis, N.D. Lagaros ans M. Fragiadakis

Comp. Methods Appl. Mech.
Engrg. 191

Proceedings of the 5th

International Congress on Computational Mechanics (GRACM 05)

Earthquake Spectra 18

Advanced Supervised Learning in Multi-layer Perceptrons:
From Back-propogation to Adaptive Learning Algorithms.

Proc. of the IEEE
International Conference on Neural Networks (ICNN)

Optimization of the back-propagation
algorithm for training multi-layer perceptrons.

Comp. Meth. Appl. Mech. Engrg. - Special Issue
194

Probabilistic seismic demand analysis of non-linear
structures

Advances in Engineering Software 39
Eart. Engrg.&

Str. Dyn 31

International Journal of
Non-linear Mechanics 37

Comp. Meth. Appl. Mech. Engrg. 193

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

